1 research outputs found

    Agricultural matrix affects differently the alpha and beta structural and functional diversity of soil microbial communities in a fragmented Mediterranean holm oak forest

    No full text
    The chapter III of: FLORES-RENTERÍA, Dulce. Effects of forest fragmentation on the plant‐soil‐microbial interactions = Efectos de la fragmentación del encinar en las interacciones planta‐suelo‐microorganismos (2016), is relationed with the paper: Agricultural matrix affects differently the alpha and beta structural and functional diversity of soil microbial communities in a fragmented Mediterranean holm oak forest. Soil Biology and Biochemistry 92: 79-90 (2016). http://hdl.handle.net/10261/151312El capítulo III de la tesis doctoral: FLORES-RENTERÍA, Dulce. Efectos de la fragmentación del encinar en las interacciones planta‐suelo‐microorganismos = Effects of forest fragmentation on the plant‐soil‐microbial interactions (2016, está relacionado con el artículo: Agricultural matrix affects differently the alpha and beta structural and functional diversity of soil microbial communities in a fragmented Mediterranean holm oak forest. Soil Biology and Biochemistry 92: 79-90 (2016). http://hdl.handle.net/10261/151312Given the increase in habitat fragmentation in the Mediterranean forests, understanding its impacts over the ecology of soil microbial communities, responsible for many ecosystem functions, and their capacity to metabolize different substrates from soil organic matter, is of upmost importance. We evaluated how the influence of the agricultural matrix, as one of the main consequences of forest fragmentation, may affect both the composition and the functioning of soil microbial communities in Mediterranean holm oak forests. We determined structural and functional alpha and beta-diversity of microbial communities, as well as microbial assemblages and metabolic profiles, by using a commonly used fingerprinting technique (Denaturing Gel Gradient Electrophoresis) and a community level physiological profiles (CLPP) technique (EcoPlate). Key drivers of soil microbial structure and metabolism were evaluated by using structural equation models (SEM) and multivariate ordination (envfit) approaches. Our results pointed out that forest fragmentation affects microbial community structure and functioning through a complex cascade of causal-effect interactions with the plant–soil system, which ultimately affects the nutrient cycling and functioning of forest soils. We also found a strong scale-dependency effect of forest fragmentation over the ecology of microbial communities: fragmentation increases the local (alpha) diversity, but affected negatively microbial diversity at the landscape scale (beta diversity). This homogenization of the microbial communities and their metabolism at landscape scale resulting from habitat fragmentation may have unknown potential consequences on the capacity of these communities, and hence these ecosystems, to respond to the climate change. Finally, we found a consistent relation between the structure and functional diversity of bacterial community, which further showed the important role that the assemblage of microbial communities might have over their functioning.This work was supported by the Spanish Ministry for Economy and Competitiveness (formerly known as Innovation and Science) with the projects VULGLO (CGL2010 22180 C03 03), VERONICA (CGL2013-42271-P) and MyFUNCO (CGL2011-29585-C02-02), and the project REMEDINAL 3-CM (S2013/MAE-2719) funded by the Comunidad de Madrid.Peer Reviewe
    corecore