2 research outputs found

    The secret life of conjugative relaxases

    Get PDF
    Conjugative relaxases are well-characterized proteins responsible for the site- and strand-specific endonucleolytic cleavage and strand transfer reactions taking place at the start and end of the conjugative DNA transfer process. Most of the relaxases characterized biochemically and structurally belong to the HUH family of endonucleases. However, an increasing number of new families of relaxases are revealing a variety of protein folds and catalytic alternatives to accomplish conjugative DNA processing. Relaxases show high specificity for their cognate target DNA sequences, but several recent reports underscore the importance of their activity on secondary targets, leading to widespread mobilization of plasmids containing an oriT-like sequence. Some relaxases perform other functions associated with their nicking and strand transfer ability, such as catalyzing site-specific recombination or initiation of plasmid replication. They perform these roles in the absence of conjugation, and the validation of these functions in several systems strongly suggest that they are not mere artifactual laboratory observations. Other unexpected roles recently assigned to relaxases include controlling plasmid copy number and promoting retrotransposition. Their capacity to mediate promiscuous mobilization and genetic reorganizations can be exploited for a number of imaginative biotechnological applications. Overall, there is increasing evidence that conjugative relaxases are not only key enzymes for horizontal gene transfer, but may have been adapted to perform other roles which contribute to prokaryotic genetic plasticity. Relaxed target specificity may be key to this versatility.Acknowledgements: We are grateful to Mapi Garcillán-Barcia for helpful suggestions. Work in our lab is supported by grants BIO2017-87190-R from the MINECO (Spanish Ministry of Economy and Innovation), and IDEAS211LLOS from the AECC (Spanish Association Against Cancer) to ML. DLG-H is a recipient of a predoctoral appointment from the University of Cantabria

    The secret life of conjugative relaxases

    No full text
    Conjugative relaxases are well-characterized proteins responsible for the site- and strand-specific endonucleolytic cleavage and strand transfer reactions taking place at the start and end of the conjugative DNA transfer process. Most of the relaxases characterized biochemically and structurally belong to the HUH family of endonucleases. However, an increasing number of new families of relaxases are revealing a variety of protein folds and catalytic alternatives to accomplish conjugative DNA processing. Relaxases show high specificity for their cognate target DNA sequences, but several recent reports underscore the importance of their activity on secondary targets, leading to widespread mobilization of plasmids containing an oriT-like sequence. Some relaxases perform other functions associated with their nicking and strand transfer ability, such as catalyzing site-specific recombination or initiation of plasmid replication. They perform these roles in the absence of conjugation, and the validation of these functions in several systems strongly suggest that they are not mere artifactual laboratory observations. Other unexpected roles recently assigned to relaxases include controlling plasmid copy number and promoting retrotransposition. Their capacity to mediate promiscuous mobilization and genetic reorganizations can be exploited for a number of imaginative biotechnological applications. Overall, there is increasing evidence that conjugative relaxases are not only key enzymes for horizontal gene transfer, but may have been adapted to perform other roles which contribute to prokaryotic genetic plasticity. Relaxed target specificity may be key to this versatility.Work in our lab is supported by grants BIO2017-87190-R from the MINECO (Spanish Ministry of Economy and Innovation), and IDEAS211LLOS from the AECC (Spanish Association Against Cancer) to ML. DLG-H is a recipient of a predoctoral appointment from the University of Cantabria
    corecore