1 research outputs found

    Study of gain homogeneity and radiation effects of Low Gain Avalanche Pad Detectors

    No full text
    Silicon detectors with intrinsic charge amplification implementing a n-p-p structure are considered as a sensor technology for future tracking and timing applications in high energy physics experiments. The performance of the intrinsic gain in Low Gain Avalanche Detectors (LGAD) after irradiation is crucial for the characterization of radiation hardness and timing properties in this technology. LGAD devices irradiated with reactor neutrons or 800 MeV protons reaching fluences of 2.3 × 10 n/cm were characterized using Transient Current Technique (TCT) measurements with red and infra-red laser pulses. Leakage current variations observed in different production lots and within wafers were investigated using Thermally Stimulated Current (TSC). Results showed that the intrinsic charge amplification is reduced with increasing fluence up to 10 n/cm which is related to an effective acceptor removal. Further relevant issues were charge collection homogeneity across the detector surface and leakage current performance before and after irradiation.This work was developed in the framework of the CERN RD50 collaboration and partially financed by the Spanish Ministry of Economy, Industry and Competitiveness through the Particle Physics National Program (Ref. FPA2014-55295-C3-2-R and FPA2015-69260-C3-3-R) and co-financed with FEDER funds.Peer Reviewe
    corecore