1 research outputs found

    Tuning Paramagnetic effect of Co-Doped CdS diluted magnetic semiconductor quantum dots

    No full text
    Diluted magnetic semiconductor quantum dots (DMS-QDs) are known for their outstanding optical and magnetic properties. II–VI DMS-QDs, in particular, are interesting for spintronics, nonvolatile memory, and magneto-optical devices. Therefore, studying the optical and magnetic properties of different II-VI semiconductors doped with transition metal atoms is of great importance. Tuning II-VI QDs optical properties can be mastered by changing the QDs particle size and/or structure. However tuning the magnetic properties of DMS-QDs is still within trial and error verification, although it is crucial in targeting different applications in spintronics. We hereby demonstrate, the ability to tune the paramagnetic effect of homogeneous Co-doped CdS QDs following a co-precipitation synthesis route with different Co2+ concentrations. The structural, optical and magnetic properties have been comprehensively studied. The dopant cobalt atoms concentration and chemical-configuration were precisely tracked by x-ray photoemission spectroscopy. Excitingly, the different Co-concentrations of 2, 5 and 10% significantly improve the magnetic properties of the CdS QDs, which exhibit a paramagnetic concentration-dependent effect. With 10% of Co atoms, we were able to achieve ~ 200 x 10(-6) molar susceptibility, that is, the same value to that of pure CoS. Thus we could obtain the highest possible paramagnetic effect in the CdS semiconducting matrix exhibiting 2.76 eV band gap, i.e. in the visible range. This efficacious result encourages the use of the present method in preparing DMS-QDs materials targeting various spintronics applications.AE and IM are acknowledging the funding provided by the joint Russian Egyptian STDF project no. 13756. AE is also grateful also for the general administration of Missions at the Ministry of High Education in Egypt for funding the mission trip to Centro de Fisica de Materiales on 2016. CR and EO are grateful for funding from the Spanish Ministry of Economy and Competitiveness (grant MAT2016-78293-C6-5-R, including FEDER funds), the Basque Government (grant IT-1255-19) and the Interreg POCTEFA V-A Spain–France–Andorra Program (EFA 194/16/TNSI) partly financed by ERDF funds.Peer reviewe
    corecore