2 research outputs found

    Numerical spatio-temporal characterization of listeria monocytogenes biofilms

    Get PDF
    11 páginas, 10 figurasAs the structure of biofilms plays a key role in their resistance and persistence, this work presents for the first time the numerical characterization of the temporal evolution of biofilm structures formed by three Listeria monocytogenes strains on two types of stainless-steel supports, AISI 304 SS No. 2B and AISI 316 SS No. 2R. Counting methods, motility tests, fluorescence microscopy and image analysis were combined to study the dynamic evolution of biofilm formation and structure. Image analysis was performed with several well-known parameters as well as a newly defined parameter to quantify spatio-temporal distribution. The results confirm the interstrain variability of L. monocytogenes species regarding biofilm structure and structure evolution. Two types of biofilm were observed: homogeneous or flat and heterogeneous or clustered. Differences in clusters and in attachment and detachment processes were due mainly to the topography and composition of the two surfaces although an effect due to motility was also found.This research was funded by the Spanish MINECO (ENZYMONO, AGL2010-22212-C02-02). M. Mosquera-Fernández acknowledges the financial support from the JAE-CSIC programme. P. Rodríguez-López acknowledges the financial support from the FPI programme (Grant number: BES-2011-050544).Peer reviewe

    Numerical spatio-temporal characterization of Listeria monocytogenes biofilms

    No full text
    As the structure of biofilms plays a key role in their resistance and persistence, this work presents for the first time the numerical characterization of the temporal evolution of biofilm structures formed by three Listeria monocytogenes strains on two types of stainless-steel supports, AISI 304 SS No. 2B and AISI 316 SS No. 2R.Counting methods, motility tests, fluorescence microscopy and image analysis were combined to study the dynamic evolution of biofilm formation and structure. Image analysis was performed with several well-known parameters as well as a newly defined parameter to quantify spatio-temporal distribution.The results confirm the interstrain variability of L. monocytogenes species regarding biofilm structure and structure evolution. Two types of biofilm were observed: homogeneous or flat and heterogeneous or clustered. Differences in clusters and in attachment and detachment processes were due mainly to the topography and composition of the two surfaces although an effect due to motility was also found. (C) 2014 Elsevier B.V. All rights reserved
    corecore