2 research outputs found

    On-line learning of a fuzzy controller for a precise vehicle cruise control system

    Full text link
    Usually, vehicle applications require the use of artificial intelligent techniques to implement control methods, due to noise provided by sensors or the impossibility of full knowledge about dynamics of the vehicle (engine state, wheel pressure or occupiers weight). This work presents a method to on-line evolve a fuzzy controller for commanding vehicles? pedals at low speeds; in this scenario, the slightest alteration in the vehicle or road conditions can vary controller?s behavior in a non predictable way. The proposal adapts singletons positions in real time, and trapezoids used to codify the input variables are modified according with historical data. Experimentation in both simulated and real vehicles are provided to show how fast and precise the method is, even compared with a human driver or using different vehicles

    On-line learning of a fuzzy controller for a precise vehicle cruise control system

    No full text
    Usually, vehicle applications need to use artificial intelligence techniques to implement control strategies able to deal with the noise in the signals provided by sensors, or with the impossibility of having full knowledge of the dynamics of a vehicle (engine state, wheel pressure, or occupants' weight). This work presents a cruise control system which is able to manage the pedals of a vehicle at low speeds. In this context, small changes in the vehicle or road conditions can occur unpredictably. To solve this problem, a method is proposed to allow the on-line evolution of a zero-order TSK fuzzy controller to adapt its behaviour to uncertain road or vehicle dynamics. Starting from a very simple or even empty configuration, the consequents of the rules are adapted in real time, while the membership functions used to codify the input variables are modified after a certain period of time. Extensive experimentation in both simulated and real vehicles showed the method to be both fast and precise, even when compared with a human driver. © 2012 Elsevier Ltd. All rights reserved.Spanish Ministry of Economy and Competitiveness, TIN2008-06872-C04-04, TIN2011-27696-C02-01, TRA2011-14112-E , TRA2008U06602-C03U01; Andalusian Government, TRA2011-14112-E, TRA2008U06602-C03U01, P07-TIC-02970, P11-TIC-8001Peer Reviewe
    corecore