1 research outputs found

    Analysis of minor low molecular weight carbohydrates in cocoa beans by chromatographic techniques coupled to mass spectrometry

    No full text
    The low molecular weight carbohydrate (LMWC) profile of cocoa beans has recently been studied using hydrophilic interaction liquid chromatography coupled to electrospray ionization-time of flight mass spectrometry (HILIC-ESI-TOF MS) and HILIC-ESI-tandem mass spectrometry (HILIC-ESI-MS). However, different LMWC could not be unambiguously identified. Thus, as a first approach in this paper, gas chromatography coupled to mass spectrometry (GC–MS) was used as a complementary analytical technique to characterize LMWC of cocoa beans. Different mono-, di-, tri- and tetrasaccharides, as well as myo-inositol, galactinol and a diglycosil glycerol were detected. scyllo-Inositol, 1-kestose and 6-kestose were identified in unfermented cocoa beans for the first time. Moreover, other minor LMWC were tentatively assigned as fructosyl-fructose, fructosyl-glucose and glucosyl-sucrose. As a second step, in order to evaluate new possible indicators of cocoa bean origin or fermentation status, scyllo-inositol, 1-kestose and galactinol were selected as target compounds and a HILIC-ESI-TOF MS method was optimized for their analysis. The optimized conditions, using an acetonitrile:water gradient with 0.05% ammonium hydroxide at 40 °C showed narrow peaks (w: 0.3-0.5 min) with good resolution values (R: 0.83–2.83). The validated HILIC-ESI-TOF MS method was applied to the analysis of 35 cocoa bean samples from different origins and fermentation status. The content of scyllo-inositol, 1-kestose and galactinol in unfermented beans (n = 21) was in the range of traces-504.9, 36.1–133.5 and traces-1970.4 μg g cocoa DM respectively. In fermented beans (n = 14), the content of scyllo-inositol and 1-kestose was in the range of 15.5–491.9 and traces-115.5 μg g cocoa DM respectively. Galactinol was absent in fermented beans, indicating that it could be a potential indicator of fermentation status. The methodology proposed could be used for quality control of natural products and other food ingredients containing inositols and oligosaccharides.This work was supported by Barry Callebaut (Belgium), byMinisterio de Economía, Industria y Competitividad of Spain(project AGL2016-80475-R), by Comunidad de Madrid (Spain)and European funding from FEDER program (S2013/ABI-3028AVANSECAL-CM)Peer Reviewe
    corecore