1 research outputs found

    Direct synthesis of graphitic carbon nanostructures from saccharides and their use as electrocatalytic supports

    Get PDF
    An easy method is described for fabricating graphitic carbon nanostructures (GCNs) from a variety of saccharides; i.e., a monosaccharide (glucose), a disaccharide (sucrose) and a polysaccharide (starch). The synthesis scheme consists of: (a) impregnation of saccharide with Ni or Fe nitrates, (b) heat treatment under inert atmosphere (N2) up to 900°C or 1000°C and (c) oxidation in liquid phase to selectively recover the graphitic carbon. This procedure leads to GCNs with a variety of morphologies: nanopipes nanocoils and nanocapsules. Such GCNs have a high crystallinity, as shown by TEM/SAED, XRD and Raman analysis. The GCNs were used as supports for platinum nanoparticles, which were well dispersed (Mean Pt size ~2–3 nm). Electrocatalysts thus prepared have electrocatalytic surface areas in the 70–95 m2 g−1 Pt range and exhibit high catalytic activities towards methanol electrooxidation.Financial support for this research work provided by the Spanish MCyT (MAT2005-00262, MAT2004-01479 and FEDER)
    corecore