3 research outputs found

    Aquatic pollution may favor the success of the invasive species A. franciscana

    Get PDF
    The genus Artemia consists of several bisexual and parthenogenetic sibling species. One of them, A. franciscana, originally restricted to the New World, becomes invasive when introduced into ecosystems out of its natural range of distribution. Invasiveness is anthropically favored by the use of cryptobiotic eggs in the aquaculture and pet trade. The mechanisms of out-competition of the autochthonous Artemia by the invader are still poorly understood. Ecological fitness may play a pivotal role, but other underlying biotic and abiotic factors may contribute. Since the presence of toxicants in hypersaline aquatic ecosystems has been documented, our aim here is to study the potential role of an organophosphate pesticide, chlorpyrifos, in a congeneric mechanism of competition between the bisexual A. franciscana (AF), and one of the Old World parthenogenetic siblings, A. parthenogenetica (PD). For this purpose we carried out life table experiments with both species, under different concentrations of the toxicant (0.1, 1 and 5 μg/l), and analyzed the cholinesterase inhibition at different developmental stages. The results evidence that both, AF and PD, showed an elevated tolerance to high ranges of chlorpyrifos, but AF survived better and its fecundity was less affected by the exposure to the pesticide than that of PD. The higher fecundity of AF is a selective advantage in colonization processes leading to its establishment as NIS. Besides, under the potential selective pressure of abiotic factors, such as the presence of toxicants, its higher resistance in terms of survival and biological fitness also indicates out-competitive advantages.Spanish Ministry for Science and Innovation project, CGL2005-02306, CGL2008-04737-E

    Aquatic pollution may favor the success of the invasive species A. franciscana

    Get PDF
    The genus Artemia consists of several bisexual and parthenogenetic sibling species. One of them, A. franciscana, originally restricted to the New World, becomes invasive when introduced into ecosystems out of its natural range of distribution. Invasiveness is anthropically favored by the use of cryptobiotic eggs in the aquaculture and pet trade. The mechanisms of out-competition of the autochthonous Artemia by the invader are still poorly understood. Ecological fitness may play a pivotal role, but other underlying biotic and abiotic factors may contribute. Since the presence of toxicants in hypersaline aquatic ecosystems has been documented, our aim here is to study the potential role of an organophosphate pesticide, chlorpyrifos, in a congeneric mechanism of competition between the bisexual A. franciscana (AF), and one of the Old World parthenogenetic siblings, A. parthenogenetica (PD). For this purpose we carried out life table experiments with both species, under different concentrations of the toxicant (0.1, 1 and 5. μg/l), and analyzed the cholinesterase inhibition at different developmental stages. The results evidence that both, AF and PD, showed an elevated tolerance to high ranges of chlorpyrifos, but AF survived better and its fecundity was less affected by the exposure to the pesticide than that of PD. The higher fecundity of AF is a selective advantage in colonization processes leading to its establishment as NIS. Besides, under the potential selective pressure of abiotic factors, such as the presence of toxicants, its higher resistance in terms of survival and biological fitness also indicates out-competitive advantages. © 2015This research was supported by the Spanish Ministry for Science and Innovation projects (CGL2005-02306 and CGL2008-04737-E) “Biodiversidad de Artemia (Branchiopoda, Anostraca) en el Mediterráneo Occidental, archipiélagos Balear y Canario. Efectos de A. franciscana como especie invasora. Implicaciones ecológicas y de interés en acuicultura” y “Biodiversidad amenazada en salinas mediterráneas”. S. Redón was supported by a Ph.D grant (FPI) from the Spanish Ministry of Science and Innovation. D. Guinot was supported by BANCAJA contract.Peer Reviewe
    corecore