1 research outputs found

    Phase change dynamics in a polymer thin film upon femtosecond and picosecond laser irradiation

    No full text
    The influence of the pulse duration on the laser-induced changes in a thin triazenepolymer film on a glass substrate has been investigated for single, near-infrared (800 nm) Ti:sapphire laser pulses with durations ranging from 130 fs up to 2.6 ps. Post-irradiation optical microscopy has been used to quantitatively determine the damage threshold fluence. The latter decreases from ∼800 mJ/cm2 for a 2.6 ps laser pulse to ∼500 mJ/cm 2 for a pulse duration of 130 fs. In situ real-time reflectivity (RTR) measurements have been performed using a ps-resolution streak camera set-up to study the transformation dynamics upon excitation with single pulses of duration of 130 fs and fluences close to the damage threshold. Very different reflectivity transients have been observed above and below the damage threshold fluence. Above the damage threshold, an extremely complicated behaviour with oscillations of up to 100% in the transient reflectivity has been observed. Below the damage threshold, the transient reflectivity decreases by as much as 70% within 1 ns with a subsequent recovery to the initial level occurring on the ms timescale. No apparent damage could be detected by optical microscopy under these irradiation conditions. Furthermore, within the 395-410 mJ/cm2 fluence range, the transient reflectivity increases by ∼10%. The analysis of these results indicates that the observed transformations are thermal in nature, in contrast to the known photochemical decomposition of this triazenepolymer under UV irradiation. © 2005 Elsevier B.V. All rights reserved.This work has been partially supported by the EU in the frame of the TMR Project XPOSE (Grant No. HPRN-CT-2000-00160). S.M.W. acknowledges the funding in the frame of the same project. J.B. acknowledges the funding of the CSIC through a contract in the frame of the I3P programme (Ref. I3PPC2002), cofunded by the European Social Fund. T.L. acknowledges support by the Swiss National Science Foundation.Peer Reviewe
    corecore