3 research outputs found

    Monitoring stabilizing procedures of archaeological iron using electrochemical impedance spectroscopy

    Full text link
    A methodology for monitoring washing procedures applied to stabilize archaeological iron is described. It is based on the combination of voltammetry of microparticles (VMP) with electrochemical impedance spectroscopy (EIS). A semiempirical approach is used where the impedances at low and high frequencies were related with the fraction areas of passive and corrosion layers generated during the stabilizing treatment, the thickness, and the porosity of the corrosion layer. The variation of such parameters with the time of washing was determined from EIS data for four types of desalination procedures using concentrated NaOH and/or Na2SO3 aqueous solutions on archaeological iron artifacts. After 2 months of treatment, EIS data indicate that an essentially identical stable state was attained in all cases, as confirmed by the formation of a passive magnetite layer identified in VMP measurements while the rate of variation of corroded surface and porosity at short washing times varied significantly from one stabilization procedure to another.Financial support from the MEC Project CTQ2011-28079-CO3-02 which is supported with ERDF funds is gratefully acknowledged.Domenech Carbo, A.; Lastras Pérez, M.; Rodríguez Calás, F.; Cano, E.; Piquero Cilla, J.; Osete Cortina, L. (2013). Monitoring stabilizing procedures of archaeological iron using electrochemical impedance spectroscopy. Journal of Solid State Electrochemistry. 18(2):399-409. https://doi.org/10.1007/s10008-013-2232-yS399409182Cronyn JM (1990) The elements of archaeological conservation. Routledge, LondonTorgoose S (1982) Stud Conservat 27:97–101Keene S, Orton C (1985) Stud Conservat 30:136–142Selwyn L (2004) Overview of archaeological iron: the corrosion problem, key factors affecting treatment, and gaps in current knowledge. Proc. Metal 2004, National Museum of Australia, Canberra, pp 294–306Scott DA, Eggert G (2009) Iron and steel in art: corrosion, colorants, conservation. Archetype, LondonNorth NA, Pearson C (1978) Stud Conservat 23:174–186Gilberg MR, Seeley NJ (1982) Stud Conservat 27:180–184Cornell RM, Giovanoli U (1990) Clays Clay Miner 38:469–476Scott DA, Seeley NJ (1987) Stud Conservat 32:73–76Watkinson D (1996) Chloride extraction from archaeological iron: comparative treatment efficiencies. In: Roy A, Smith P (eds) Archaeological conservation and its consequences. International Institute for Conservation, London, pp 208–212Watkinson D, Al Zahrani A (2008) The Conservator 31:75–86Schmutzler B, Eggert G (2010) Simplifying sodium sulphite solutions—the DBU Project Rettung vom dem Rost. In: Eggert G, Schmutzler B (eds) Archaeological Iron Conservation Colloquium 2010. State Academy of Art and Design, StuttgartWatkinson D (1982) An assessment of the lithium hydroxide treatments for archaeological ironwork. In: Clarke RW, Blackshaw SM (eds) Conservation of iron, maritime monographs and reports of the National Maritime Museum 53, pp 208–213Wunderlich C-H, Kuhn C, Dröber V, Eggert G, Schleid T (2010) Efficiency of chloride extraction with organic ammonium bases: the Kur-Project “Conservation and Professional Sotrage of Iron Artefacts”. In: Eggert G, Schmutzler B (eds) Archaeological Iron Conservation Colloquium 2010. State Academy of Art and Design, StuttgartBurshneva S, Smirnova N (2010) Some new advances in alkaline sulphite treatment of archaeological iron. In: Eggert G, Schmutzler B (eds) Archaeological Iron Conservation Colloquium 2010. State Academy of Art and Design, Stuttgartde Vivies P, Cook D, Drews MJ, Gonzalez NG, Mardikian P, Memet JB (2007) Transformation of akaganéite in archaeological iron artefacts using subcritical treatment. In: Degrigny C, Van Langh R, Joosten I, Ankersmit B (eds) Proceedings of the International Conference on Metals Conservation, Amsterdam, Netherlands, pp 17–21Mardikian P, Gonzalez N, Drews MJ, Nasanen L (2010) The use of subcritical solutions for the stabilization of archaeological iron artifacts. In: Eggert G, Schmutzler B (eds) Archaeological Iron Conservation Colloquium 2010. State Academy of Art and Design, StuttgartDalard F, Gourbeyre Y, Degrigny C (2002) Stud Conserv 47:117–121Adriaens A, Dowsett M, Leyssens K, Van Gasse B (2007) Anal Bioanal Chem 387:861–868Guilminot E, Baron G, Memet JB, Huet N, Le Noc E (2007) Electrolytic treatment of archaeological marine chloride impregnated iron objects by remote control. In: Degrigny C, Van Lang R, Joosten I, Ankersmith B (eds) Metal 07. Proceedings of the Interim meeting of the ICOM-CC Metal WG, vol 3, Amsterdam (the Netherlands). Rijksmuseum Amsterdam, Amsterdam, pp 38–43Liu J, Li Y, Wu M (2008) Stud Conserv 53:41–48Selwyn LS, McKinnon WR, Argyropoulos V (2001) Stud Conservat 46:109–120Schmutzler B, Eggert G (2010) The chloride left behind (dis)solving an analytical problem. In: Eggert G, Schmutzler B (eds) Achaeological Iron Conservation Colloquium 2010. State Academy of Art and Design, StuttgartDoménech-Carbó A, Lastras M, Rodríguez F, Osete-Cortina L (2013) Microchem J 106:41–50Scholz F, Meyer B (1992) Chem Soc Rev 23:341–347Scholz F, Meyer B (1998) Voltammetry of solid microparticles immobilized on electrode surfaces. In: Bard AJ, Rubinstein I (eds) Electroanalytical Chemistry, A Series of Advances, vol 20. Marcel Dekker, New York, pp 1–86Scholz F, Schröder U, Gulaboski R (2005) Electrochemistry of immobilized particles and droplets. Springer, BerlinDoménech-Carbó A, Doménech-Carbó MT, Costa V (2009) Electrochemical Methods in Archaeometry, Conservation and Restoration. In: Scholz F (ed) Monographs in electrochemistry series. Springer, BerlinDoménech-Carbó A (2010) J Solid State Electrochem 14:363–379Doménech-Carbó A (2012) Electrochemical techniques. In: Edwards HGM, Vandenabeele P (eds) Analytical Archaeometry, selected topics, chapter 7. The Royal Society of Chemistry, LondonDoménech-Carbó A, Labuda J, Scholz F (2013) Pure Appl Chem 85:609–631Doménech-Carbó A (2011) Anal Methods 3:2181–2188Doménech-Carbó A (2012) Electrochemical analysis: voltammetry of microparticles. In: Dillmann P, Adriaens A, Angelini E, Watkinson D (eds) Corrosion and conservation of cultural heritage metallic artefacts (Chapter II.7). European Federation of Corrosion, Maney, LeedsWalter GW (1981) J Electroanal Chem 118:259–273Murray JN (1997) Progr Org Coat 31:375–391Bastidas JM, Polo JL, Cano E, Torres CL, Mora N (2000) Mater Corros 51:712–718Bastidas JM, Polo JL, Torres CL, Cano E (2001) Corros Sci 43:269–281Alves VA, Brett CMA (2002) Electrochim Acta 47:2081–2091Polo JL, Cano E, Bastidas JM (2002) J Electroanal Chem 537:183–187Park JJ, Pyun SI (2003) J Solid State Electrochem 7:380–388Evesque M, Keddam M, Takenouti H (2004) Electrochim Acta 49:2937–2943Li WS, Cai SQ, Luo JL (2004) J Electrochem Soc 151:B220–B226Mora N, Cano E, Polo JL, Puente JM, Bastidas JM (2004) Corros Sci 46:563–568Chiavari C, Colledan A, Frignani A, Brunoro G (2006) Mater Chem Phys 95:252–259Chiavari C, Rahmouni K, Takenouti H, Joiret S, Vermaut P (2007) Electrochim Acta 52:7760–7769Liu W, Zhang H, Qu Z, Zhang Y, Li J (2010) J Solid State Electrochem 14:965–973Toledo-Martos LA, Pech-Canul MA (2011) J Solid State Electrochem 15:1927–1934Cano E, Lafuente D, Bastidas DM (2010) J Solid State Electrochem 14:381–391Grassini S, Angelini E, Parvis M, Bouchar M, Dillmann P, Neff D (2013) Appl Phys A. doi: 10.1007/s00339-013-7724-1Hernandez-Escampa M, Gonzalez J, Uruchurtu-Chavarin J (2010) J Appl Electrochem 40:345–356Young L (1961) Anodic oxide films. Academic, New YorkRosas-Camacho O, Urquidi-Macdonald M, Macdonald DD (2009) ECS Trans 19:143–165Macdonald DD, Engelhardt GL (2010) ECS Trans 28:123–144Sharifi-Asl F, Taylor ML, Lu Z, Engelhardt GL, Kursten B, Macdonald DD (2013) Electrochim Acta 102:161–173Macdonald DD (2011) Electrochim Acta 56:1761–1772Macdonald DD, Sikora A, Engelhardt G (1998) Electrochim Acta 43:87–107Grygar T (1996) J Electroanal Chem 405:117–125Grygar T (1997) J Solid State Electrochem 1:77–82Xu J, Huang W, McCreery RL (1996) J Electroanal Chem 410:235–242Kuang F, Zhang D, Li Y, Wan Y, Hou B (2009) J Solid State Electrochem 13:385–390Chen G, Waraksa CC, Cho H, Macdonald DD, Mallouk TE (2003) J Electrochm Soc 150:E423–E428Rimmer M, Watkinson D, Wang Q (2012) Stud Conservat 57:29–41Poljacek SM, Risovic D, Cigula T, Gojo M (2012) J Solid State Electrochem 16:1077–1089Sluythers-Rehnach M (1994) Pure Appl Chem 66:1831–1891Boukamp BA, Bouwmeester HJM (2003) Solid State Ionics 157:29–33Ibrahim MAM, Pongkao D, Yoshimura M (2002) J Solid State Electrochem 2002(6):341–350Xia Z, Nanjo H, Aizawa T, Kanakubo M, Fujimura M, Onagawa J (2007) Surf Sci 601:5133–5141Lee S-J, Pyun S-I (2007) J Solid State Electrochem 11:829–839Raistrick ID (1990) Electrochim Acta 35:1579–1586Doménech-Carbó A, Doménech-Carbó MT, Peiró MA (2011) Electroanalysis 23:1391–1400Doménech-Carbó A, Doménech-Carbó MT, Pasíes T, Bouzas MC (2012) Electroanalysis 24:1945–1955Mutombo P, Hackerman N (1997) J Solid State Electrochem 1:194–198Fetisov VB, Ermakov AN, Belysheva GM, Fetisov AV, Kamyshov VM, Brainina KZ (2004) J Solid State Electrochem 8:565–571Venkatram MS, Cole IS, Emmanuel B (2011) Electrochim Acta 56:8192–8203Turgoose S (1993) Structure, composition and deterioration of unearthed iron objects. In: Current problems in the conservation of metal antiquities. Tokyo National Research Institute of Cultural Properties, Tokyo, pp 35–5

    Monitoring stabilizing procedures of archaeological iron using electrochemical impedance spectroscopy

    No full text
    A methodology for monitoring washing procedures applied to stabilize archaeological iron is described. It is based on the combination of voltammetry of microparticles (VMP) with electrochemical impedance spectroscopy (EIS). A semi-empirical approach is used where the impedances at low and high frequencies were related with the fraction areas of passive and corrosion layers generated during the stabilizing treatment, the thickness, and the porosity of the corrosion layer. The variation of such parameters with the time of washing was determined from EIS data for four types of desalination procedures using concentrated NaOH and/or Na2SO3 aqueous solutions on archaeological iron artifacts. After 2 months of treatment, EIS data indicate that an essentially identical “stable” state was attained in all cases, as confirmed by the formation of a passive magnetite layer identified in VMP measurements while the rate of variation of corroded surface and porosity at short washing times varied significantly from one stabilization procedure to another.Peer Reviewe
    corecore