5 research outputs found

    Epigenetic loss of RNA-methyltransferase NSUN5 in glioma targets ribosomes to drive a stress adaptive translational program

    Get PDF
    Resultado clínico; Epitranscriptómica; GliomaClinical outcome; Epitranscriptomics; GliomaResultat clínic; Epitranscriptòmica; GliomaTumors have aberrant proteomes that often do not match their corresponding transcriptome profiles. One possible cause of this discrepancy is the existence of aberrant RNA modification landscapes in the so-called epitranscriptome. Here, we report that human glioma cells undergo DNA methylation-associated epigenetic silencing of NSUN5, a candidate RNA methyltransferase for 5-methylcytosine. In this setting, NSUN5 exhibits tumor-suppressor characteristics in vivo glioma models. We also found that NSUN5 loss generates an unmethylated status at the C3782 position of 28S rRNA that drives an overall depletion of protein synthesis, and leads to the emergence of an adaptive translational program for survival under conditions of cellular stress. Interestingly, NSUN5 epigenetic inactivation also renders these gliomas sensitive to bioactivatable substrates of the stress-related enzyme NQO1. Most importantly, NSUN5 epigenetic inactivation is a hallmark of glioma patients with long-term survival for this otherwise devastating disease.This work was supported by a European Research Council (ERC) Advanced Grant under the European Community’s Seventh Framework Program (FP7/2007-2013)/ERC Grant Agreement No. 268626—EPINORC project (to M. Esteller), the Ministerio de Economía y Competitividad (MINECO) under Grant No. SAF2014-55000-R (to M. Esteller) and the Instituto de Salud Carlos III (ISCIII), under the FIS PI16/01278 Project (to J. Seoane), the Integrated Project of Excellence no. PIE13/00022 (ONCOPROFILE) (to M. Esteller), CIBER 2016 CB16/12/00312 (CIBERONC) (to M. Esteller), co-financed by the European Development Regional Fund, ‘A way to achieve Europe’ ERDF, the AGAUR—Catalan Government (Project No. 2009SGR1315 and 2014SGR633) (to M. Esteller), the Cellex Foundation (to M. Esteller), Obra Social “La Caixa” (to M. Esteller), the CERCA Program and the Health and Science Departments of the Catalan Government (Generalitat de Catalunya) (to M. Esteller) and a grant from the National Health and Medical Research Council of Australia (APP1061551, to TP). M.W. Boudreau is a member of the NIH Chemistry-Biology Interface Training Program (T32-GM070421)

    Epigenetic loss of RNA-methyltransferase NSUN5 in glioma targets ribosomes to drive a stress adaptive translational program

    Get PDF
    Altres ajuts: This work was supported by the Obra Social "La Caixa" (to M. Esteller).Tumors have aberrant proteomes that often do not match their corresponding transcriptome profiles. One possible cause of this discrepancy is the existence of aberrant RNA modification landscapes in the so-called epitranscriptome. Here, we report that human glioma cells undergo DNA methylation-associated epigenetic silencing of NSUN5, a candidate RNA methyltransferase for 5-methylcytosine. In this setting, NSUN5 exhibits tumor-suppressor characteristics in vivo glioma models. We also found that NSUN5 loss generates an unmethylated status at the C3782 position of 28S rRNA that drives an overall depletion of protein synthesis, and leads to the emergence of an adaptive translational program for survival under conditions of cellular stress. Interestingly, NSUN5 epigenetic inactivation also renders these gliomas sensitive to bioactivatable substrates of the stress-related enzyme NQO1. Most importantly, NSUN5 epigenetic inactivation is a hallmark of glioma patients with long-term survival for this otherwise devastating disease

    Epigenetic loss of RNA‑methyltransferase NSUN5 in glioma targets ribosomes to drive stress adaptive translational program

    Get PDF
    Tumors have aberrant proteomes that often do not match their corresponding transcriptome profiles. One possible cause of this discrepancy is the existence of aberrant RNA modification landscapes in the so-called epitranscriptome. Here, we report that human glioma cells undergo DNA methylation-associated epigenetic silencing of NSUN5, a candidate RNA methyltransferase for 5-methylcytosine. In this setting, NSUN5 exhibits tumor-suppressor characteristics in vivo glioma models. We also found that NSUN5 loss generates an unmethylated status at the C3782 position of 28S rRNA that drives an overall depletion of protein synthesis, and leads to the emergence of an adaptive translational program for survival under conditions of cellular stress. Interestingly, NSUN5 epigenetic inactivation also renders these gliomas sensitive to bioactivatable substrates of the stress-related enzyme NQO1. Most importantly, NSUN5 epigenetic inactivation is a hallmark of glioma patients with long-term survival for this otherwise devastating disease

    Epigenetic loss of RNA-methyltransferase NSUN5 in glioma targets ribosomes to drive a stress adaptive translational program

    No full text
    Tumors have aberrant proteomes that often do not match their corresponding transcriptome profiles. One possible cause of this discrepancy is the existence of aberrant RNA modification landscapes in the so-called epitranscriptome. Here, we report that human glioma cells undergo DNA methylation-associated epigenetic silencing of NSUN5, a candidate RNA methyltransferase for 5-methylcytosine. In this setting, NSUN5 exhibits tumor-suppressor characteristics in vivo glioma models. We also found that NSUN5 loss generates an unmethylated status at the C3782 position of 28S rRNA that drives an overall depletion of protein synthesis, and leads to the emergence of an adaptive translational program for survival under conditions of cellular stress. Interestingly, NSUN5 epigenetic inactivation also renders these gliomas sensitive to bioactivatable substrates of the stress-related enzyme NQO1. Most importantly, NSUN5 epigenetic inactivation is a hallmark of glioma patients with long-term survival for this otherwise devastating disease.This work was supported by a European Research Council (ERC) Advanced Grant under the European Community’s Seventh Framework Program (FP7/2007-2013)/ERC Grant Agreement No. 268626—EPINORC project (to M. Esteller), the Ministerio de Economía y Competitividad (MINECO) under Grant No. SAF2014-55000-R (to M. Esteller) and the Instituto de Salud Carlos III (ISCIII), under the FIS PI16/01278 Project (to J. Seoane), the Integrated Project of Excellence no. PIE13/00022 (ONCOPROFILE) (to M. Esteller), CIBER 2016 CB16/12/00312 (CIBERONC) (to M. Esteller), co-financed by the European Development Regional Fund, ‘A way to achieve Europe’ ERDF, the AGAUR—Catalan Government (Project No. 2009SGR1315 and 2014SGR633) (to M. Esteller), the Cellex Foundation (to M. Esteller), Obra Social “La Caixa” (to M. Esteller), the CERCA Program and the Health and Science Departments of the Catalan Government (Generalitat de Catalunya) (to M. Esteller) and a grant from the National Health and Medical Research Council of Australia (APP1061551, to TP). M.W. Boudreau is a member of the NIH Chemistry-Biology Interface Training Program (T32-GM070421)
    corecore