3 research outputs found

    Plasmonic nickel nanoantennas

    Get PDF
    7 páginas, 6 figuras.-- El pdf del artículo es la versión post-print.-- et al.The fundamental optical properties of pure nickel nanostructures are studied by far-field extinction spectroscopy and optical near-field microscopy, providing direct experimental evidence of the existence of particle plasmon resonances predicted by theory. Experimental and calculated near-field maps allow for unambiguous identification of dipolar plasmon modes. By comparing calculated near-field and far-field spectra, dramatic shifts are found between the near-field and far-field plasmon resonances, which are much stronger than in gold nanoantennas. Based on a simple damped harmonic oscillator model to describe plasmonic resonances, it is possible to explain these shifts as due to plasmon damping.Supported by the European FP7 project ‘Nanoantenna’ (FP7-HEALTH-F5-2009-241818-NANOANTENNA) and the National Project MAT2009 –08398 from the Spanish Ministerio de Ciencia e Innovacion. J.A. acknowledges fi nancial help by the Department of Industry of the Basque Government through the ETORTEK program NANOPHOT. P.V. acknowledges funding from the Basque Government under Programs No. PI2009–17 as well as the Spanish Ministry of Science and Education under Project No. MAT2009–07980. Z. P. acknowledges support from Swedish Foundation for Strategic Research through RMA08–0109 “Functional Electromagnetic Metamaterials” program. J. N. acknowledges funding from the Generalitat de Catalunya and the Spanish Ministry of Science and Education through No. 2009-SGR-1292 and No. MAT2010–20616-C02 projects. A.D. acknowledges support from the Swedish Research Council.Peer reviewe

    Plasmonic nickel nanoantennas

    Get PDF
    7 páginas, 6 figuras.-- El pdf del artículo es la versión post-print.-- et al.The fundamental optical properties of pure nickel nanostructures are studied by far-field extinction spectroscopy and optical near-field microscopy, providing direct experimental evidence of the existence of particle plasmon resonances predicted by theory. Experimental and calculated near-field maps allow for unambiguous identification of dipolar plasmon modes. By comparing calculated near-field and far-field spectra, dramatic shifts are found between the near-field and far-field plasmon resonances, which are much stronger than in gold nanoantennas. Based on a simple damped harmonic oscillator model to describe plasmonic resonances, it is possible to explain these shifts as due to plasmon damping.Supported by the European FP7 project ‘Nanoantenna’ (FP7-HEALTH-F5-2009-241818-NANOANTENNA) and the National Project MAT2009 –08398 from the Spanish Ministerio de Ciencia e Innovacion. J.A. acknowledges fi nancial help by the Department of Industry of the Basque Government through the ETORTEK program NANOPHOT. P.V. acknowledges funding from the Basque Government under Programs No. PI2009–17 as well as the Spanish Ministry of Science and Education under Project No. MAT2009–07980. Z. P. acknowledges support from Swedish Foundation for Strategic Research through RMA08–0109 “Functional Electromagnetic Metamaterials” program. J. N. acknowledges funding from the Generalitat de Catalunya and the Spanish Ministry of Science and Education through No. 2009-SGR-1292 and No. MAT2010–20616-C02 projects. A.D. acknowledges support from the Swedish Research Council.Peer reviewe

    Plasmonic Nickel Nanoantennas

    No full text
    The fundamental optical properties of pure nickel nanostructures are studied by far-field extinction spectroscopy and optical near-field microscopy, providing direct experimental evidence of the existence of particle plasmon resonances predicted by theory. Experimental and calculated near-field maps allow for unambiguous identification of dipolar plasmon modes. By comparing calculated near-field and far-field spectra, dramatic shifts are found between the near-field and far-field plasmon resonances, which are much stronger than in gold nanoantennas. Based on a simple damped harmonic oscillator model to describe plasmonic resonances, it is possible to explain these shifts as due to plasmon damping
    corecore