1 research outputs found

    Generation of the Thymine Triplet State by Through-Bond Energy Transfer

    Full text link
    This is the peer reviewed version of the following article: Chem. Eur. J. 2019, 25, 7004 7011, which has been published in final form at https://doi.org/10.1002/chem.201900830. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Benzophenone (BP) and drugs containing the BP chromophore, such as the non-steroidal anti-inflammatory drug ketoprofen, have been widely reported as DNA photo-sensitizers through triplet-triplet energy transfer (TTET). In the present work, a direct spectroscopic fingerprint for the formation of the thymine triplet ((3)Thy*) by through-bond (TB) TTET from (BP)-B-3* has been uncovered. This has been achieved in two new systems that have been designed and synthesized with one BP and one thymine (Thy) covalently linked to the two ends of the rigid skeleton of the natural bile acids cholic and lithocholic acid. The results shown here prove that it is possible to achieve triplet energy transfer to a Thy unit even when the photosensitizer is at a long (non-bonding) distance.Financial support from the Spanish Government (Grant SEV-2016-0683 and Projects CTQ2012-38754-C03-03 and CTQ2015-70164P), the Generalitat Valenciana (Prometeo Program), and the Universitat Politecnica de Valencia (pre-doctoral FPI fellowship for P.M.) is gratefully acknowledged.Miró, P.; Gomez-Mendoza, M.; Sastre Navarro, GI.; Cuquerella Alabort, MC.; Miranda Alonso, MÁ.; Marín García, ML. (2019). Generation of the Thymine Triplet State by Through-Bond Energy Transfer. Chemistry - A European Journal. 25(28):7004-7011. https://doi.org/10.1002/chem.201900830S700470112528Mouret, S., Baudouin, C., Charveron, M., Favier, A., Cadet, J., & Douki, T. (2006). Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proceedings of the National Academy of Sciences, 103(37), 13765-13770. doi:10.1073/pnas.0604213103Setlow, R. B., Grist, E., Thompson, K., & Woodhead, A. D. (1993). Wavelengths effective in induction of malignant melanoma. Proceedings of the National Academy of Sciences, 90(14), 6666-6670. doi:10.1073/pnas.90.14.6666Rochette, P. J. (2003). UVA-induced cyclobutane pyrimidine dimers form predominantly at thymine-thymine dipyrimidines and correlate with the mutation spectrum in rodent cells. Nucleic Acids Research, 31(11), 2786-2794. doi:10.1093/nar/gkg402Smith, C. A., Wang, M., Jiang, N., Che, L., Zhao, X., & Taylor, J.-S. (1996). Mutation Spectra of M13 Vectors Containing Site-Specific Cis-Syn, Trans-Syn-I, (6−4), and Dewar Pyrimidone Photoproducts of Thymidylyl-(3‘→5‘)-Thymidine inEscherichia coliunder SOS Conditions†. Biochemistry, 35(13), 4146-4154. doi:10.1021/bi951975cGentil, A. (1996). Mutagenicity of a unique thymine-thymine dimer or thymine-thymine pyrimidine pyrimidone (6-4) photoproduct in mammalian cells. Nucleic Acids Research, 24(10), 1837-1840. doi:10.1093/nar/24.10.1837Görner, H. (1990). Phosphorescence of nucleic acids and DNA components at 77 K. Journal of Photochemistry and Photobiology B: Biology, 5(3-4), 359-377. doi:10.1016/1011-1344(90)85051-wLamola, A. A., & Eisinger, J. (1971). Excited states of nucleotides in water at room temperature. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 240(3), 313-325. doi:10.1016/0005-2787(71)90524-7Cuquerella, M. C., Lhiaubet-Vallet, V., Bosca, F., & Miranda, M. A. (2011). Photosensitised pyrimidine dimerisation in DNA. Chemical Science, 2(7), 1219. doi:10.1039/c1sc00088hBlancafort, L., & Voityuk, A. A. (2018). Thermally induced hopping model for long-range triplet excitation energy transfer in DNA. Physical Chemistry Chemical Physics, 20(7), 4997-5000. doi:10.1039/c7cp07811kAntusch, L., Gaß, N., & Wagenknecht, H.-A. (2016). Elucidation of the Dexter-Type Energy Transfer in DNA by Thymine-Thymine Dimer Formation Using Photosensitizers as Artificial Nucleosides. Angewandte Chemie International Edition, 56(5), 1385-1389. doi:10.1002/anie.201610065Antusch, L., Gaß, N., & Wagenknecht, H.-A. (2016). Aufklärung des Dexter-Energietransfers in DNA an der Thymin-Thymin-Dimerbildung mithilfe von Photosensibilisatoren als artifizielle Nucleoside. Angewandte Chemie, 129(5), 1406-1410. doi:10.1002/ange.201610065Kanvah, S., Joseph, J., Schuster, G. B., Barnett, R. N., Cleveland, C. L., & Landman, U. (2010). Oxidation of DNA: Damage to Nucleobases. Accounts of Chemical Research, 43(2), 280-287. doi:10.1021/ar900175aGiese, B., Amaudrut, J., Köhler, A.-K., Spormann, M., & Wessely, S. (2001). Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling. Nature, 412(6844), 318-320. doi:10.1038/35085542Giese, B. (2000). Long-Distance Charge Transport in DNA:  The Hopping Mechanism. Accounts of Chemical Research, 33(9), 631-636. doi:10.1021/ar990040bTakada, T., Kawai, K., Fujitsuka, M., & Majima, T. (2004). Direct observation of hole transfer through double-helical DNA over 100 A. Proceedings of the National Academy of Sciences, 101(39), 14002-14006. doi:10.1073/pnas.0402756101Takada, T., Kawai, K., Cai, X., Sugimoto, A., Fujitsuka, M., & Majima, T. (2004). Charge Separation in DNA via Consecutive Adenine Hopping. Journal of the American Chemical Society, 126(4), 1125-1129. doi:10.1021/ja035730wTakada, T., Fujitsuka, M., & Majima, T. (2007). Single-molecule observation of DNA charge transfer. Proceedings of the National Academy of Sciences, 104(27), 11179-11183. doi:10.1073/pnas.0700795104Kawai, K., & Majima, T. (2013). Hole Transfer Kinetics of DNA. Accounts of Chemical Research, 46(11), 2616-2625. doi:10.1021/ar400079sKawai, K., Kodera, H., Osakada, Y., & Majima, T. (2009). Sequence-independent and rapid long-range charge transfer through DNA. Nature Chemistry, 1(2), 156-159. doi:10.1038/nchem.171Kawai, K., Kodera, H., & Majima, T. (2010). Long-Range Charge Transfer through DNA by Replacing Adenine with Diaminopurine. Journal of the American Chemical Society, 132(2), 627-630. doi:10.1021/ja907409zGiese, B., Carl, B., Carl, T., Carell, T., Behrens, C., Hennecke, U., … Feresin, E. (2004). Excess Electron Transport Through DNA: A Single Electron Repairs More than One UV-Induced Lesion. Angewandte Chemie International Edition, 43(14), 1848-1851. doi:10.1002/anie.200353264Giese, B., Carl, B., Carl, T., Carell, T., Behrens, C., Hennecke, U., … Feresin, E. (2004). Excess Electron Transport Through DNA: A Single Electron Repairs More than One UV-Induced Lesion. Angewandte Chemie, 116(14), 1884-1887. doi:10.1002/ange.200353264Park, M. J., Fujitsuka, M., Kawai, K., & Majima, T. (2011). Direct Measurement of the Dynamics of Excess Electron Transfer through Consecutive Thymine Sequence in DNA. Journal of the American Chemical Society, 133(39), 15320-15323. doi:10.1021/ja2068017Lin, S.-H., Fujitsuka, M., & Majima, T. (2016). Excess-Electron Transfer in DNA by a Fluctuation-Assisted Hopping Mechanism. The Journal of Physical Chemistry B, 120(4), 660-666. doi:10.1021/acs.jpcb.5b10857Manetto, A., Breeger, S., Chatgilialoglu, C., & Carell, T. (2006). Complex Sequence Dependence by Excess-Electron Transfer through DNA with Different Strength Electron Acceptors. Angewandte Chemie International Edition, 45(2), 318-321. doi:10.1002/anie.200502551Manetto, A., Breeger, S., Chatgilialoglu, C., & Carell, T. (2006). Komplexe Sequenzabhängigkeit beim Transport von Überschusselektronen durch DNA mit verschieden starken Acceptoren. Angewandte Chemie, 118(2), 325-328. doi:10.1002/ange.200502551Heil, K., Pearson, D., & Carell, T. (2011). Chemical investigation of light induced DNA bipyrimidine damage and repair. Chem. Soc. Rev., 40(8), 4271-4278. doi:10.1039/c000407nHaas, C., Kräling, K., Cichon, M., Rahe, N., & Carell, T. (2004). Excess Electron Transfer Driven DNA Does Not Depend on the Transfer Direction. Angewandte Chemie International Edition, 43(14), 1842-1844. doi:10.1002/anie.200353067Haas, C., Kräling, K., Cichon, M., Rahe, N., & Carell, T. (2004). Excess Electron Transfer Driven DNA Does Not Depend on the Transfer Direction. Angewandte Chemie, 116(14), 1878-1880. doi:10.1002/ange.200353067Carell, T. (1995). Sunlight-Damaged DNA Repaired with Sunlight. Angewandte Chemie International Edition in English, 34(22), 2491-2494. doi:10.1002/anie.199524911Carell, T. (1995). Reparatur von sonnenlichtgeschädigter DNA mit Sonnenlicht. Angewandte Chemie, 107(22), 2697-2700. doi:10.1002/ange.19951072207Breeger, S., Hennecke, U., & Carell, T. (2004). Excess Electron-Transfer-Based Repair of a Cis-Syn Thymine Dimer in DNA Is Not Sequence Dependent. Journal of the American Chemical Society, 126(5), 1302-1303. doi:10.1021/ja038358tCuquerella, M. C., Lhiaubet-Vallet, V., Cadet, J., & Miranda, M. A. (2012). Benzophenone Photosensitized DNA Damage. Accounts of Chemical Research, 45(9), 1558-1570. doi:10.1021/ar300054eDelatour, T., Douki, T., D’Ham, C., & Cadet, J. (1998). Photosensitization of thymine nucleobase by benzophenone through energy transfer, hydrogen abstraction and one-electron oxidation. Journal of Photochemistry and Photobiology B: Biology, 44(3), 191-198. doi:10.1016/s1011-1344(98)00142-0Schreier, W. J., Schrader, T. E., Koller, F. O., Gilch, P., Crespo-Hernandez, C. E., Swaminathan, V. N., … Kohler, B. (2007). Thymine Dimerization in DNA Is an Ultrafast Photoreaction. Science, 315(5812), 625-629. doi:10.1126/science.1135428Schreier, W. J., Kubon, J., Regner, N., Haiser, K., Schrader, T. E., Zinth, W., … Gilch, P. (2009). Thymine Dimerization in DNA Model Systems: Cyclobutane Photolesion Is Predominantly Formed via the Singlet Channel. Journal of the American Chemical Society, 131(14), 5038-5039. doi:10.1021/ja900436tSandros, K., Haglid, F., Ryhage, R., Ryhage, R., & Stevens, R. (1964). Transfer of Triplet State Energy in Fluid Solutions. III. Reversible Energy Transfer. Acta Chemica Scandinavica, 18, 2355-2374. doi:10.3891/acta.chem.scand.18-2355Douki, T., Bérard, I., Wack, A., & Andrä, S. (2014). Contribution of Cytosine-Containing Cyclobutane Dimers to DNA Damage Produced by Photosensitized Triplet-Triplet Energy Transfer. Chemistry - A European Journal, 20(19), 5787-5794. doi:10.1002/chem.201303905Gut, I. G., Wood, P. D., & Redmond, R. W. (1996). Interaction of Triplet Photosensitizers with Nucleotides and DNA in Aqueous Solution at Room Temperature. Journal of the American Chemical Society, 118(10), 2366-2373. doi:10.1021/ja9519344Miro, P., Lhiaubet-Vallet, V., Marin, M. L., & Miranda, M. A. (2015). Photosensitized Thymine Dimerization via Delocalized Triplet Excited States. Chemistry - A European Journal, 21(47), 17051-17056. doi:10.1002/chem.201502719Encinas, S., Belmadoui, N., Climent, M. J., Gil, S., & Miranda, M. A. (2004). Photosensitization of Thymine Nucleobase by Benzophenone Derivatives as Models for Photoinduced DNA Damage:  Paterno−Büchi vs Energy and Electron Transfer Processes. Chemical Research in Toxicology, 17(7), 857-862. doi:10.1021/tx034249gTrzcionka, J., Lhiaubet-Vallet, V., Paris, C., Belmadoui, N., Climent, M. J., & Miranda, M. A. (2007). Model Studies on a Carprofen Derivative as Dual Photosensitizer for Thymine Dimerization and (6–4) Photoproduct Repair. ChemBioChem, 8(4), 402-407. doi:10.1002/cbic.200600394Joseph, A., Prakash, G., & Falvey, D. E. (2000). Model Studies of the (6−4) Photoproduct Photolyase Enzyme:  Laser Flash Photolysis Experiments Confirm Radical Ion Intermediates in the Sensitized Repair of Thymine Oxetane Adducts. Journal of the American Chemical Society, 122(45), 11219-11225. doi:10.1021/ja002541uLiu, X.-L., Wang, J.-B., Tong, Y., & Song, Q.-H. (2013). Regioselectivity and Competition of the Paternò-Büchi Reaction and Triplet-Triplet Energy Transfer between Triplet Benzophenones and Pyrimidines: Control by Triplet Energy Levels. Chemistry - A European Journal, 19(39), 13216-13223. doi:10.1002/chem.201300958Zuo, Z., Yao, S., Luo, J., Wang, W., Zhang, J., & Lin, N. (1992). Laser photolysis of cytosine, cytidine and dCMP in aqueous solution. Journal of Photochemistry and Photobiology B: Biology, 15(3), 215-222. doi:10.1016/1011-1344(92)85125-eMiro, P., Vayá, I., Sastre, G., Jiménez, M. C., Marin, M. L., & Miranda, M. A. (2016). Triplet energy management between two signaling units through cooperative rigid scaffolds. Chemical Communications, 52(4), 713-716. doi:10.1039/c5cc08102
    corecore