212,007 research outputs found

    How Do Martian Dust Devils Vary Throughout the Sol?

    Get PDF
    Dust devils are vortices of air made visible by entrained dust particles. Dust devils have been observed on Earth and captured in many Mars lander and orbiter images. Martian dust devils may be important to the global climate and are parameterised within Mars Global Circulation Models (MGCMs). We show that the dust devil parameterisation in use within most MGCMs results in an unexpectedly high level of dust devil activity during morning hours. In contrast to expectations, based on the observed behaviour of terrestrial dust devils and the diurnal maximum thermal contrast at the surface, we find that large areas of the modelled Martian surface experience dust devil activity during the morning as well as in the afternoon, and that many locations experience a peak in dust devil activity before mid-sol. Using the UK MGCM, we study the amount of surface dust lifted by dust devils throughout the diurnal cycle as a proxy for the level of dust devil activity occurring. We compare the diurnal variation in dust devil activity with the diurnal variation of the variables included in the dust devil parameterisation. We find that the diurnal variation in dust devil activity is strongly modulated by near-surface wind speeds. Within the range of daylight hours, higher wind speeds tend to produce more dust devil activity, rather than the activity simply being governed by the availability of heat at the planet's surface, which peaks in early afternoon. We compare our results with observations of Martian dust devil timings and obtain a good match with the majority of surface-based surveys. We do not find such a good match with orbital observations, but these data tend to be biased in their temporal coverage. We propose that the generally accepted description of dust devil behaviour on Mars is incomplete, and that theories of dust devil formation may need to be modified specifically for the Martian environment. Further dust devil observations are required to support any such modifications

    Viking Lander 1 and 2 revisited: The characterisation and detection of Martian dust devils

    Get PDF
    Dust devil data from Mars is limited by a lack of data relating to diurnal dust devil behaviour. The meteorological data from the Viking landers has been revisited to provide these diurnal statistics

    Expansion of CORE-SINEs in the genome of the Tasmanian devil

    Get PDF
    Background: The genome of the carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii, Order: Dasyuromorphia), was sequenced in the hopes of finding a cure for or gaining a better understanding of the contagious devil facial tumor disease that is threatening the species’ survival. To better understand the Tasmanian devil genome, we screened it for transposable elements and investigated the dynamics of short interspersed element (SINE) retroposons. Results: The temporal history of Tasmanian devil SINEs, elucidated using a transposition in transposition analysis, indicates that WSINE1, a CORE-SINE present in around 200,000 copies, is the most recently active element. Moreover, we discovered a new subtype of WSINE1 (WSINE1b) that comprises at least 90% of all Tasmanian devil WSINE1s. The frequencies of WSINE1 subtypes differ in the genomes of two of the other Australian marsupial orders. A co-segregation analysis indicated that at least 66 subfamilies of WSINE1 evolved during the evolution of Dasyuromorphia. Using a substitution rate derived from WSINE1 insertions, the ages of the subfamilies were estimated and correlated with a newly established phylogeny of Dasyuromorphia. Phylogenetic analyses and divergence time estimates of mitochondrial genome data indicate a rapid radiation of the Tasmanian devil and the closest relative the quolls (Dasyurus) around 14 million years ago. Conclusions: The radiation and abundance of CORE-SINEs in marsupial genomes indicates that they may be a major player in the evolution of marsupials. It is evident that the early phases of evolution of the carnivorous marsupial order Dasyuromorphia was characterized by a burst of SINE activity. A correlation between a speciation event and a major burst of retroposon activity is for the first time shown in a marsupial genome

    Adult Trichoptera of the Devil Track River Watershed, Cook County, Minnesota and Their Role in Biomonitoring.

    Get PDF
    Thirty two light trap collections of 7,797 adult Trichoptera made from 1990-1992, show that the Devil Track River Watershed in northeast Minnesota includes at least 16 families, 41 genera, and 101 species of caddisflies including three new state records: Agyrpnia colorata, Agrypnia obsoleta, and Polycentropus glacialis. The greatest number of species were represented by the families Limnephilidae (21), Leptoceridae (19), Hydroptilidae (13), Polycentropodidae (12), nidae (10), and Hydropsychidae (9). Twenty two species were collected sites and 46 at one or two sites. The greatest number of species (81) was collected from the Devil Track River and Devil Track Lake with fewer (64 and 40) from two sites on Junco Creek. Most species are widely distributed and inhabit cool streams and lakes throughout eastern and northern North America. The high species diversity at all sites and the low number of tolerant species indicate that water quality within the watershed is good to excellent. However, increased water temperature, acidity, and/or organic enrichment could adversely affect at least one third of the Trichoptera species inhabiting the Devil Track River Watershed

    Field Measurements of Terrestrial and Martian Dust Devils

    Get PDF
    Surface-based measurements of terrestrial and martian dust devils/convective vortices provided from mobile and stationary platforms are discussed. Imaging of terrestrial dust devils has quantified their rotational and vertical wind speeds, translation speeds, dimensions, dust load, and frequency of occurrence. Imaging of martian dust devils has provided translation speeds and constraints on dimensions, but only limited constraints on vertical motion within a vortex. The longer mission durations on Mars afforded by long operating robotic landers and rovers have provided statistical quantification of vortex occurrence (time-of-sol, and recently seasonal) that has until recently not been a primary outcome of more temporally limited terrestrial dust devil measurement campaigns. Terrestrial measurement campaigns have included a more extensive range of measured vortex parameters (pressure, wind, morphology, etc.) than have martian opportunities, with electric field and direct measure of dust abundance not yet obtained on Mars. No martian robotic mission has yet provided contemporaneous high frequency wind and pressure measurements. Comparison of measured terrestrial and martian dust devil characteristics suggests that martian dust devils are larger and possess faster maximum rotational wind speeds, that the absolute magnitude of the pressure deficit within a terrestrial dust devil is an order of magnitude greater than a martian dust devil, and that the time-of-day variation in vortex frequency is similar. Recent terrestrial investigations have demonstrated the presence of diagnostic dust devil signals within seismic and infrasound measurements; an upcoming Mars robotic mission will obtain similar measurement types

    The angel wins

    Full text link
    The angel-devil game is played on an infinite two-dimensional ``chessboard''. The squares of the board are all white at the beginning. The players called angel and devil take turns in their steps. When it is the devil's turn, he can turn a square black. The angel always stays on a white square, and when it is her turn she can fly at a distance of at most J steps (each of which can be horizontal, vertical or diagonal) to a new white square. Here J is a constant. The devil wins if the angel does not find any more white squares to land on. The result of the paper is that if J is sufficiently large then the angel has a strategy such that the devil will never capture her. This deceptively easy-sounding result has been a conjecture, surprisingly, for about thirty years. Several other independent solutions have appeared simultaneously, some of them prove that J=2 is sufficient (see the Wikipedia on the angel problem). Still, it is hoped that the hierarchical solution presented here may prove useful for some generalizations.Comment: 28 pages, 8 figure

    Devil in Deerskins: My Life with Grey Owl by Anahareo

    Get PDF
    Review of Anaharea\u27s Devil in Deerskins: My Life with Grey Owl
    • 

    corecore