9 research outputs found

    Porting Batched Iterative Solvers onto Intel GPUs with SYCL

    Full text link
    Batched linear solvers play a vital role in computational sciences, especially in the fields of plasma physics and combustion simulations. With the imminent deployment of the Aurora Supercomputer and other upcoming systems equipped with Intel GPUs, there is a compelling demand to expand the capabilities of these solvers for Intel GPU architectures. In this paper, we present our efforts in porting and optimizing the batched iterative solvers on Intel GPUs using the SYCL programming model. The SYCL-based implementation exhibits impressive performance and scalability on the Intel GPU Max 1550s (Ponte Vecchio GPUs). The solvers outperform our previous CUDA implementation on NVIDIA H100 GPUs by an average of 2.4x for the PeleLM application inputs. The batched solvers are ready for production use in real-world scientific applications through the Ginkgo library.Comment: 9 pages, 8 figures, submitted to the P3HPC Workshop at SC2

    Towards an auto-tuned and task-based SpMV (LASs Library)

    Get PDF
    We present a novel approach to parallelize the SpMV kernel included in LASs (Linear Algebra routines on OmpSs) library, after a deep review and analysis of several well-known approaches. LASs is based on OmpSs, a task-based runtime that extends OpenMP directives, providing more flexibility to apply new strategies. Based on tasking and nesting, with the aim of improving the workload imbalance inherent to the SpMV operation, we present a strategy especially useful for highly imbalanced input matrices. In this approach, the number of created tasks is dynamically decided in order to maximize the use of the resources of the platform. Throughout this paper, SpMV behavior depending on the selected strategy (state of the art and proposed strategies) is deeply analyzed, setting in this way the base for a future auto-tunable code that is able to select the most suitable approach depending on the input matrix. The experiments of this work were carried out for a set of 12 matrices from the Suite Sparse Matrix Collection, all of them with different characteristics regarding their sparsity. The experiments of this work were performed on a node of Marenostrum 4 supercomputer (with two sockets Intel Xeon, 24 cores each) and on a node of Dibona cluster (using one ARM ThunderX2 socket with 32 cores). Our tests show that, for Intel Xeon, the best parallelization strategy reduces the execution time of the reference MKL multi-threaded version up to 67%. On ARM ThunderX2, the reduction is up to 56% with respect to the OmpSs parallel reference.This project has received funding from the Spanish Ministry of Economy and Competitiveness under the project Computación de Altas Prestaciones VII (TIN2015- 65316-P), the Departament d’Innovació, Universitats i Empresa de la Generalitat de Catalunya, under project MPEXPAR: Models de Programació i Entorns d’Execució Parallels (2014-SGR-1051), and the Juan de la Cierva Grant Agreement No IJCI-2017- 33511, and the Spanish Ministry of Science and Innovation under the project Heterogeneidad y especialización en la era post-Moore (RTI2018-093684-BI00). We also acknowledge the funding provided by Fujitsu under the BSC-Fujitsu joint project: Math Libraries Migration and OptimizationPeer ReviewedPostprint (author's final draft

    A Fast Solver for Large Tridiagonal Systems on Multi-Core Processors (Lass Library)

    Get PDF
    [Abstract]: Many problems of industrial and scientific interest require the solving of tridiagonal linear systems. This paper presents several implementations for the parallel solving of large tridiagonal systems on multi-core architectures, using the OmpSs programming model. The strategy used for the parallelization is based on the combination of two different existing algorithms, PCR and Thomas. The Thomas algorithm, which cannot be parallelized, requires the fewest number of floating point operations. The PCR algorithm is the most popular parallel method, but it is more computationally expensive than Thomas. The method proposed in this paper starts applying the PCR algorithm to break down one large tridiagonal system into a set of smaller and independent ones. In a second step, these independent systems are concurrently solved using Thomas. The paper also contains an analytical study of which is the best point to switch from PCR to Thomas. Also, the paper addresses the main performance issues of combining PCR and Thomas proposing a set of alternative implementations, some of them even imply algorithmic changes. The performance evaluation shows that the best implementation achieves a peak speedup of 4 with respect to the Intel MKL counterpart routine and 2.5 with respect to a single-threaded Thomas.This work was supported in part by the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreements Human Brain Project SGA1 and Human Brain Project SGA2 under Grant 720270 and Grant 785907, in part by the Spanish Ministry of Economy and Competitiveness under the Project Computación de Altas Prestaciones VII under Grant TIN2015-65316-P, in part by the Departament d’Innovació, Universitats i Empresa de la Generalitat de Catalunya, under project MPEXPAR: Models de Programació i Entorns d’Execució Paralůlels under Grant 2014-SGR-1051, in part by the Juan de la Cierva under Grant IJCI-2017-33511, in part by the Fujitsu under the Barcelona Supercomputing Center-Fujitsu Joint Project: Math Libraries Migration and Optimization, in part by the Ministerio de Economía, Industria y Competitividad of Spain, in part by the Fondo Europeo de Desarrollo Regional Funds of the European Union under Grant TIN2016-75845-P, and in part by the Xunta de Galicia co-founded by the European Regional Development Fund (ERDF) under the Consolidation Programme of Competitive Reference Groups under Grant ED431C 2017/04, and in part by the Centro Singular de Investigación de Galicia accreditatión 2016-2019 under Grant ED431G/01.Xunta de Galicia; ED431C 2017/04Xunta de Galicia; ED431G/01Generalitat de Catalunya; 2014-SGR-105

    Simulating the behavior of the human brain on GPUS

    Get PDF
    The simulation of the behavior of the Human Brain is one of the most important challenges in computing today. The main problem consists of finding efficient ways to manipulate and compute the huge volume of data that this kind of simulations need, using the current technology. In this sense, this work is focused on one of the main steps of such simulation, which consists of computing the Voltage on neurons’ morphology. This is carried out using the Hines Algorithm and, although this algorithm is the optimum method in terms of number of operations, it is in need of non-trivial modifications to be efficiently parallelized on GPUs. We proposed several optimizations to accelerate this algorithm on GPU-based architectures, exploring the limitations of both, method and architecture, to be able to solve efficiently a high number of Hines systems (neurons). Each of the optimizations are deeply analyzed and described. Two different approaches are studied, one for mono-morphology simulations (batch of neurons with the same shape) and one for multi-morphology simulations (batch of neurons where every neuron has a different shape). In mono-morphology simulations we obtain a good performance using just a single kernel to compute all the neurons. However this turns out to be inefficient on multi-morphology simulations. Unlike the previous scenario, in multi-morphology simulations a much more complex implementation is necessary to obtain a good performance. In this case, we must execute more than one single GPU kernel. In every execution (kernel call) one specific part of the batch of the neurons is solved. These parts can be seen as multiple and independent tridiagonal systems. Although the present paper is focused on the simulation of the behavior of the Human Brain, some of these techniques, in particular those related to the solving of tridiagonal systems, can be also used for multiple oil and gas simulations. Our studies have proven that the optimizations proposed in the present work can achieve high performance on those computations with a high number of neurons, being our GPU implementations about 4× and 8× faster than the OpenMP multicore implementation (16 cores), using one and two NVIDIA K80 GPUs respectively. Also, it is important to highlight that these optimizations can continue scaling, even when dealing with a very high number of neurons.This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No. 720270 (HBP SGA1), from the Spanish Ministry of Economy and Competitiveness under the project Computación de Altas Prestaciones VII (TIN2015-65316-P), the Departament d’Innovació, Universitats i Empresa de la Generalitat de Catalunya, under project MPEXPAR: Models de Programació i Entorns d’Execució Parallels (2014-SGR-1051). We thank the support of NVIDIA through the BSC/UPC NVIDIA GPU Center of Excellence, and the European Union’s Horizon 2020 Research and Innovation Program under the Marie Sklodowska-Curie Grant Agreement No. 749516.Peer ReviewedPostprint (published version

    Simulating the Behaviour of the Human Brain on NVIDIA GPU: cuHinesBatch & cuThomasBatch implementations

    Get PDF
    Understand the human brain is one of the century challenges. On this work we are going to achieve a small step towards this objective presenting a novel data layout in order to compute more efficiently the Hines algorithm on GPU. A more general tridiagonal solver is going to be presented too

    cuThomasBatch and cuThomasVBatch, CUDA Routines to compute batch of tridiagonal systems on NVIDIA GPUs

    Get PDF
    The solving of tridiagonal systems is one of the most computationally expensive parts in many applications, so that multiple studies have explored the use of NVIDIA GPUs to accelerate such computation. However, these studies have mainly focused on using parallel algorithms to compute such systems, which can efficiently exploit the shared memory and are able to saturate the GPUs capacity with a low number of systems, presenting a poor scalability when dealing with a relatively high number of systems. The gtsvStridedBatch routine in the cuSPARSE NVIDIA package is one of these examples, which is used as reference in this article. We propose a new implementation (cuThomasBatch) based on the Thomas algorithm. Unlike other algorithms, the Thomas algorithm is sequential, and so a coarse-grained approach is implemented where one CUDA thread solves a complete tridiagonal system instead of one CUDA block as in gtsvStridedBatch. To achieve a good scalability using this approach, it is necessary to carry out a transformation in the way that the inputs are stored in memory to exploit coalescence (contiguous threads access to contiguous memory locations). Different variants regarding the transformation of the data are explored in detail. We also explore some variants for the case of variable batch, when the size of the systems of the batch has different size (cuThomasVBatch). The results given in this study prove that the implementations carried out in this work are able to beat the reference code, being up to 5× (in double precision) and 6× (in single precision) faster using the latest NVIDIA GPU architecture, the Pascal P100.This project was funded from the European Union's Horizon 2020 research and innovation programme under grant agreement 720270 (HBPSGA1), from the Spanish Ministry of Economy and Competitiveness under the project Computación de Altas Prestaciones VII (TIN2015-65316-P)and the Departament d'Innovació, Universitats i Empresa de la Generalitat de Catalunya, under project MPEXPAR: Models de Programació iEntorns d'Execució Paral·lels (2014-SGR-1051). We thank the support of NVIDIA through the BSC/UPC NVIDIA GPU Center of Excellence andthe valuable feedback provided by Lung Sheng Chien and Alex Fit-Florea. Antonio J. Peña was cofinanced by the Spanish Ministry of Economy andCompetitiveness under Juan de la Cierva fellowship number IJCI-2015-23266.Peer ReviewedPostprint (author's final draft
    corecore