6,916 research outputs found

    Authentication enhancement in command and control networks: (a study in Vehicular Ad-Hoc Networks)

    Get PDF
    Intelligent transportation systems contribute to improved traffic safety by facilitating real time communication between vehicles. By using wireless channels for communication, vehicular networks are susceptible to a wide range of attacks, such as impersonation, modification, and replay. In this context, securing data exchange between intercommunicating terminals, e.g., vehicle-to-everything (V2X) communication, constitutes a technological challenge that needs to be addressed. Hence, message authentication is crucial to safeguard vehicular ad-hoc networks (VANETs) from malicious attacks. The current state-of-the-art for authentication in VANETs relies on conventional cryptographic primitives, introducing significant computation and communication overheads. In this challenging scenario, physical (PHY)-layer authentication has gained popularity, which involves leveraging the inherent characteristics of wireless channels and the hardware imperfections to discriminate between wireless devices. However, PHY-layerbased authentication cannot be an alternative to crypto-based methods as the initial legitimacy detection must be conducted using cryptographic methods to extract the communicating terminal secret features. Nevertheless, it can be a promising complementary solution for the reauthentication problem in VANETs, introducing what is known as “cross-layer authentication.” This thesis focuses on designing efficient cross-layer authentication schemes for VANETs, reducing the communication and computation overheads associated with transmitting and verifying a crypto-based signature for each transmission. The following provides an overview of the proposed methodologies employed in various contributions presented in this thesis. 1. The first cross-layer authentication scheme: A four-step process represents this approach: initial crypto-based authentication, shared key extraction, re-authentication via a PHY challenge-response algorithm, and adaptive adjustments based on channel conditions. Simulation results validate its efficacy, especially in low signal-to-noise ratio (SNR) scenarios while proving its resilience against active and passive attacks. 2. The second cross-layer authentication scheme: Leveraging the spatially and temporally correlated wireless channel features, this scheme extracts high entropy shared keys that can be used to create dynamic PHY-layer signatures for authentication. A 3-Dimensional (3D) scattering Doppler emulator is designed to investigate the scheme’s performance at different speeds of a moving vehicle and SNRs. Theoretical and hardware implementation analyses prove the scheme’s capability to support high detection probability for an acceptable false alarm value ≤ 0.1 at SNR ≥ 0 dB and speed ≤ 45 m/s. 3. The third proposal: Reconfigurable intelligent surfaces (RIS) integration for improved authentication: Focusing on enhancing PHY-layer re-authentication, this proposal explores integrating RIS technology to improve SNR directed at designated vehicles. Theoretical analysis and practical implementation of the proposed scheme are conducted using a 1-bit RIS, consisting of 64 × 64 reflective units. Experimental results show a significant improvement in the Pd, increasing from 0.82 to 0.96 at SNR = − 6 dB for multicarrier communications. 4. The fourth proposal: RIS-enhanced vehicular communication security: Tailored for challenging SNR in non-line-of-sight (NLoS) scenarios, this proposal optimises key extraction and defends against denial-of-service (DoS) attacks through selective signal strengthening. Hardware implementation studies prove its effectiveness, showcasing improved key extraction performance and resilience against potential threats. 5. The fifth cross-layer authentication scheme: Integrating PKI-based initial legitimacy detection and blockchain-based reconciliation techniques, this scheme ensures secure data exchange. Rigorous security analyses and performance evaluations using network simulators and computation metrics showcase its effectiveness, ensuring its resistance against common attacks and time efficiency in message verification. 6. The final proposal: Group key distribution: Employing smart contract-based blockchain technology alongside PKI-based authentication, this proposal distributes group session keys securely. Its lightweight symmetric key cryptography-based method maintains privacy in VANETs, validated via Ethereum’s main network (MainNet) and comprehensive computation and communication evaluations. The analysis shows that the proposed methods yield a noteworthy reduction, approximately ranging from 70% to 99%, in both computation and communication overheads, as compared to the conventional approaches. This reduction pertains to the verification and transmission of 1000 messages in total

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy

    Get PDF
    Transformative artificially intelligent tools, such as ChatGPT, designed to generate sophisticated text indistinguishable from that produced by a human, are applicable across a wide range of contexts. The technology presents opportunities as well as, often ethical and legal, challenges, and has the potential for both positive and negative impacts for organisations, society, and individuals. Offering multi-disciplinary insight into some of these, this article brings together 43 contributions from experts in fields such as computer science, marketing, information systems, education, policy, hospitality and tourism, management, publishing, and nursing. The contributors acknowledge ChatGPT’s capabilities to enhance productivity and suggest that it is likely to offer significant gains in the banking, hospitality and tourism, and information technology industries, and enhance business activities, such as management and marketing. Nevertheless, they also consider its limitations, disruptions to practices, threats to privacy and security, and consequences of biases, misuse, and misinformation. However, opinion is split on whether ChatGPT’s use should be restricted or legislated. Drawing on these contributions, the article identifies questions requiring further research across three thematic areas: knowledge, transparency, and ethics; digital transformation of organisations and societies; and teaching, learning, and scholarly research. The avenues for further research include: identifying skills, resources, and capabilities needed to handle generative AI; examining biases of generative AI attributable to training datasets and processes; exploring business and societal contexts best suited for generative AI implementation; determining optimal combinations of human and generative AI for various tasks; identifying ways to assess accuracy of text produced by generative AI; and uncovering the ethical and legal issues in using generative AI across different contexts

    Research of Business Information Solution Vendors for Company Digital Transformation

    Get PDF
    Znanstvena monografija Raziskava ponudnikov poslovnih informacijskih rešitev za digitalno transformacijo podjetij obravnava področje trajnostne digitalne preozbrazbe, na katero vpliva tako izbira tehnološke platforme kot tudi informacijska arhitektura digitaliziranih organizacij. Evropska unija (EU) je opredelila digitalno preobrazbo kot eno od ključnih področij razvoja. Evropska komisija je oblikovala in objavila vizijo in smernice za digitalno preobrazbo, ki vključujejo tudi cilje EU na področju digitalne preobrazbe. EU se tudi zaveda izzivov, povezanih z onesnaževanjem in podnebnimi spremembami, ki jih onesnaževanje povzroča, ter njihove povezanosti z digitalno preobrazbo. EU je objavila “European Green Deal”, ki temelji na konceptih trajnostnega razvoja Združenih narodov. Celovita trajnostno usmerjena obravnava digitalne preobrazbe tako vključuje združitev poslovnih procesov in digitalnih tehnologij v digitalizirano poslovanje. Zato je v prvem delu znanstvene monografije poudarek na digitalni preobrazbi in odgovorih na vprašanje, kako lahko informacijske tehnologije in informacijske rešitve vplivajo na trajnostni razvoj podjetij in družbe. V drugem delu znanstvene monografije je opredeljen sodoben koncept informacijske arhitekture digitaliziranih organizacij. Pomembno vlogo pri digitalni preobrazbi organizacij imajo poslovne informacijske rešitve, ki jih organizacije uporabljajo za informacijsko podporo svojih poslovnih procesov in delovnih tokov. Najpomembnejši predstavnik poslovnih informacijskih rešitev so celovite informacijske rešitve (rešitve ERP). Poleg teh pa v skupino poslovnih informacijskih rešitev uvrščamo tudi rešitve za upravljanje odnosov s strankami (rešitve CRM), rešitve za upravljanje dokumentnih sistemov (rešitve DMS), rešitve digitalnega marketinga ter mnoge druge. Za omenjene poslovne informacijske rešitve so v drugem delu znanstvene monografije opisane opredelitve in njihove značilnosti, ponudniki teh poslovnih informacijskih rešitev in podrobnejši opis posameznih poslovnih informacijskih rešitev, prisotnih na slovenskem trgu. Tako si lahko bralec za vsak sklop raziskanih informacijskih rešitev ustvari začetni vtis o uporabnosti posameznih rešitev za posamezno podjetje oz. organizacijo.The scientific monograph "A Study of Business Information Solutions Providers for Digital Transformation of Companies" addresses sustainable digital transformation, which is influenced by both the choice of technological platforms and the information architecture of digitized organizations. The European Union (EU) has identified digital transformation as one of the key areas of development. The European Commission has formulated and published a vision and guidelines for digital transformation, including EU goals in the field of digital transformation. The EU is also aware of the challenges related to pollution and climate change caused by pollution and their connection to digital transformation. The EU has published the "European Green Deal," which is based on the concepts of sustainable development of the United Nations (European Commission, 2021b). A comprehensive sustainability-oriented approach to digital transformation thus involves integrating business processes and digital technologies into digitized business operations. Therefore, the first part of the scientific monograph focuses on digital transformation and addresses how information technologies and solutions can impact the sustainable development of companies and society. In the second part of the scientific monograph, the modern concept of information architecture of digitized organizations is defined. Business information solutions play an important role in the digital transformation of organizations, as organizations use them for information support of their business processes and workflows. The most important representative of business information solutions is the comprehensive information solution (ERP solution). In addition, solutions for customer relationship management (CRM solutions), document management system solutions (DMS solutions), digital marketing solutions, and many others are classified as business information solutions. The second part of the scientific monograph describes the definitions and characteristics of these business information solutions and the providers of these solutions. It provides a detailed description of individual business information solutions available in the Slovenian market. Thus, the reader can gain an initial impression of the usefulness of individual solutions for a particular company or organization for each group of researched information solutions

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Optimisation for Optical Data Centre Switching and Networking with Artificial Intelligence

    Get PDF
    Cloud and cluster computing platforms have become standard across almost every domain of business, and their scale quickly approaches O(106)\mathbf{O}(10^6) servers in a single warehouse. However, the tier-based opto-electronically packet switched network infrastructure that is standard across these systems gives way to several scalability bottlenecks including resource fragmentation and high energy requirements. Experimental results show that optical circuit switched networks pose a promising alternative that could avoid these. However, optimality challenges are encountered at realistic commercial scales. Where exhaustive optimisation techniques are not applicable for problems at the scale of Cloud-scale computer networks, and expert-designed heuristics are performance-limited and typically biased in their design, artificial intelligence can discover more scalable and better performing optimisation strategies. This thesis demonstrates these benefits through experimental and theoretical work spanning all of component, system and commercial optimisation problems which stand in the way of practical Cloud-scale computer network systems. Firstly, optical components are optimised to gate in 500ps\approx 500 ps and are demonstrated in a proof-of-concept switching architecture for optical data centres with better wavelength and component scalability than previous demonstrations. Secondly, network-aware resource allocation schemes for optically composable data centres are learnt end-to-end with deep reinforcement learning and graph neural networks, where 3×3\times less networking resources are required to achieve the same resource efficiency compared to conventional methods. Finally, a deep reinforcement learning based method for optimising PID-control parameters is presented which generates tailored parameters for unseen devices in O(103)s\mathbf{O}(10^{-3}) s. This method is demonstrated on a market leading optical switching product based on piezoelectric actuation, where switching speed is improved >20%>20\% with no compromise to optical loss and the manufacturing yield of actuators is improved. This method was licensed to and integrated within the manufacturing pipeline of this company. As such, crucial public and private infrastructure utilising these products will benefit from this work

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    Towards addressing training data scarcity challenge in emerging radio access networks: a survey and framework

    Get PDF
    The future of cellular networks is contingent on artificial intelligence (AI) based automation, particularly for radio access network (RAN) operation, optimization, and troubleshooting. To achieve such zero-touch automation, a myriad of AI-based solutions are being proposed in literature to leverage AI for modeling and optimizing network behavior to achieve the zero-touch automation goal. However, to work reliably, AI based automation, requires a deluge of training data. Consequently, the success of the proposed AI solutions is limited by a fundamental challenge faced by cellular network research community: scarcity of the training data. In this paper, we present an extensive review of classic and emerging techniques to address this challenge. We first identify the common data types in RAN and their known use-cases. We then present a taxonomized survey of techniques used in literature to address training data scarcity for various data types. This is followed by a framework to address the training data scarcity. The proposed framework builds on available information and combination of techniques including interpolation, domain-knowledge based, generative adversarial neural networks, transfer learning, autoencoders, fewshot learning, simulators and testbeds. Potential new techniques to enrich scarce data in cellular networks are also proposed, such as by matrix completion theory, and domain knowledge-based techniques leveraging different types of network geometries and network parameters. In addition, an overview of state-of-the art simulators and testbeds is also presented to make readers aware of current and emerging platforms to access real data in order to overcome the data scarcity challenge. The extensive survey of training data scarcity addressing techniques combined with proposed framework to select a suitable technique for given type of data, can assist researchers and network operators in choosing the appropriate methods to overcome the data scarcity challenge in leveraging AI to radio access network automation
    corecore