21,384 research outputs found

    On Lightweight Privacy-Preserving Collaborative Learning for IoT Objects

    Full text link
    The Internet of Things (IoT) will be a main data generation infrastructure for achieving better system intelligence. This paper considers the design and implementation of a practical privacy-preserving collaborative learning scheme, in which a curious learning coordinator trains a better machine learning model based on the data samples contributed by a number of IoT objects, while the confidentiality of the raw forms of the training data is protected against the coordinator. Existing distributed machine learning and data encryption approaches incur significant computation and communication overhead, rendering them ill-suited for resource-constrained IoT objects. We study an approach that applies independent Gaussian random projection at each IoT object to obfuscate data and trains a deep neural network at the coordinator based on the projected data from the IoT objects. This approach introduces light computation overhead to the IoT objects and moves most workload to the coordinator that can have sufficient computing resources. Although the independent projections performed by the IoT objects address the potential collusion between the curious coordinator and some compromised IoT objects, they significantly increase the complexity of the projected data. In this paper, we leverage the superior learning capability of deep learning in capturing sophisticated patterns to maintain good learning performance. Extensive comparative evaluation shows that this approach outperforms other lightweight approaches that apply additive noisification for differential privacy and/or support vector machines for learning in the applications with light data pattern complexities.Comment: 12 pages,IOTDI 201

    CHI and the future robot enslavement of humankind: a retrospective

    Get PDF
    As robots from the future, we are compelled to present this important historical document which discusses how the systematic investigation of interactive technology facilitated and hastened the enslavement of mankind by robots during the 21st Century. We describe how the CHI community, in general, was largely responsible for this eventuality, as well as how specific strands of interaction design work were key to the enslavement. We also mention the futility of some reactionary work emergent in your time that sought to challenge the inevitable subjugation. We conclude by congratulating the CHI community for your tireless work in promoting and supporting our evil robot agenda

    Using simulations and artificial life algorithms to grow elements of construction

    Get PDF
    'In nature, shape is cheaper than material', that is a common truth for most of the plants and other living organisms, even though they may not recognize that. In all living forms, shape is more or less directly linked to the influence of force, that was acting upon the organism during its growth. Trees and bones concentrate their material where thy need strength and stiffness, locating the tissue in desired places through the process of self-organization. We can study nature to find solutions to design problems. That’s where inspiration comes from, so we pick a solution already spotted somewhere in the organic world, that closely resembles our design problem, and use it in constructive way. First, examining it, disassembling, sorting out conclusions and ideas discovered, then performing an act of 'reverse engineering' and putting it all together again, in a way that suits our design needs. Very simple ideas copied from nature, produce complexity and exhibit self-organization capabilities, when applied in bigger scale and number. Computer algorithms of simulated artificial life help us to capture them, understand well and use where needed. This investigation is going to follow the question : How can we use methods seen in nature to simulate growth of construction elements? Different ways of extracting ideas from world of biology will be presented, then several techniques of simulated emergence will be demonstrated. Specific focus will be put on topics of computational modelling of natural phenomena, and differences in developmental and non-developmental techniques. Resulting 3D models will be shown and explained

    Topological Quantum Compiling

    Get PDF
    A method for compiling quantum algorithms into specific braiding patterns for non-Abelian quasiparticles described by the so-called Fibonacci anyon model is developed. The method is based on the observation that a universal set of quantum gates acting on qubits encoded using triplets of these quasiparticles can be built entirely out of three-stranded braids (three-braids). These three-braids can then be efficiently compiled and improved to any required accuracy using the Solovay-Kitaev algorithm.Comment: 20 pages, 20 figures, published versio

    Merging smart card data and train movement data: How to assign trips to trains?

    Get PDF
    This report explains the assignment method applied to link trips compiled in smart card data to train movements recorded in the signalling system. Particular attention has been paid to (1) origin-destination pairs with multiple potential route options, (2) peak-hour trips delayed by di culties in boarding crowded trains at the origin station, and (3) trips originating or ending on rail lines not included in the train movement dataset. In the current version of this paper the metro network on which the method has been applied is anonymised
    • 

    corecore