11,750 research outputs found

    In-vitro evaluation of different antimicrobial combinations with and without colistin against carbapenem-resistant acinetobacter baumannii

    Get PDF
    Carbapenem-resistant Acinetobacter baumannii (CR-Ab) infections are associated with high morbidity and mortality. The aim of the study was to evaluate the in-vitro activity of different antimicrobial combinations (with and without colistin, COL) against clinical isolates of CR-Ab collected from patients with CR-Ab infection, including unconventional combinations such as COL + VANcomycin (VAN) and COL + rifampin (RIF). CR-Ab strains were collected from hospitalized patients at Sapienza University of Rome. Antimicrobial susceptibility patterns were determined throughout MIC50/90s whereas the synergistic activity was evaluated by qualitative (i.e., checkerboard) and quantitative (i.e., killing studies) methods. All the strains were found oxacillinase (OXA) producers and tigecycline (TIG) sensitive whereas 2 strains were resistant to COL. Application of the checkerboard method indicated complete synergism in COL combinations at different extension: 21.4%, 57.1%, 42.8%, 35.7% for COL + meropenem (MEM), COL + RIF, COL + VAN and COL + TIG, respectively, with the non-conventional combinations COL + VAN and COL + RIF exhibiting the highest rate of synergism. Regarding COL-free combination, complete synergism was observed in 35.7% of the strains for MEM + TIG. Killing studies showed that the combinations COL + MEM, COL + TIG and MEM + TIG were bactericidal and synergistic against both colistin-sensitive and low colistin-resistant strains whereas only the combinations COL + VAN and COL + RIF showed an early and durable bactericidal activity against all the tested strains, with absence of growth at 24 h. This study demonstrated that COL-based combinations lead to a high level of synergic and bactericidal activity, especially COL + VAN and COL + RIF, even in the presence of high level of COL resistance

    Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis

    Get PDF
    Background: Infections due to antibiotic-resistant bacteria are threatening modern health care. However, estimating their incidence, complications, and attributable mortality is challenging. We aimed to estimate the burden of infections caused by antibiotic-resistant bacteria of public health concern in countries of the EU and European Economic Area (EEA) in 2015, measured in number of cases, attributable deaths, and disability-adjusted life-years (DALYs). Methods: We estimated the incidence of infections with 16 antibiotic resistance–bacterium combinations from European Antimicrobial Resistance Surveillance Network (EARS-Net) 2015 data that was country-corrected for population coverage. We multiplied the number of bloodstream infections (BSIs) by a conversion factor derived from the European Centre for Disease Prevention and Control point prevalence survey of health-care-associated infections in European acute care hospitals in 2011–12 to estimate the number of non-BSIs. We developed disease outcome models for five types of infection on the basis of systematic reviews of the literature. Findings: From EARS-Net data collected between Jan 1, 2015, and Dec 31, 2015, we estimated 671 689 (95% uncertainty interval [UI] 583 148–763 966) infections with antibiotic-resistant bacteria, of which 63·5% (426 277 of 671 689) were associated with health care. These infections accounted for an estimated 33 110 (28 480–38 430) attributable deaths and 874 541 (768 837–989 068) DALYs. The burden for the EU and EEA was highest in infants (aged <1 year) and people aged 65 years or older, had increased since 2007, and was highest in Italy and Greece. Interpretation: Our results present the health burden of five types of infection with antibiotic-resistant bacteria expressed, for the first time, in DALYs. The estimated burden of infections with antibiotic-resistant bacteria in the EU and EEA is substantial compared with that of other infectious diseases, and has increased since 2007. Our burden estimates provide useful information for public health decision-makers prioritising interventions for infectious diseases

    A proposed integrated approach for the preclinical evaluation of phage therapy in Pseudomonas infections

    Get PDF
    Bacteriophage therapy is currently resurging as a potential complement/alternative to antibiotic treatment. However, preclinical evaluation lacks streamlined approaches. We here focus on preclinical approaches which have been implemented to assess bacteriophage efficacy against Pseudomonas biofilms and infections. Laser interferometry and profilometry were applied to measure biofilm matrix permeability and surface geometry changes, respectively. These biophysical approaches were combined with an advanced Airway Surface Liquid infection model, which mimics in vitro the normal and CF lung environments, and an in vivo Galleria larvae model. These assays have been implemented to analyze KTN4 (279,593 bp dsDNA genome), a type-IV pili dependent, giant phage resembling phiKZ. Upon contact, KTN4 immediately disrupts the P. aeruginosa PAO1 biofilm and reduces pyocyanin and siderophore production. The gentamicin exclusion assay on NuLi-1 and CuFi-1 cell lines revealed the decrease of extracellular bacterial load between 4 and 7 logs and successfully prevents wild-type Pseudomonas internalization into CF epithelial cells. These properties and the significant rescue of Galleria larvae indicate that giant KTN4 phage is a suitable candidate for in vivo phage therapy evaluation for lung infection applications
    • …
    corecore