28,442 research outputs found

    In vitro investigation of the effect of disulfiram on hypoxia induced NFκB, epithelial to mesenchymal transition and cancer stem cells in glioblastoma cell lines

    Get PDF
    A thesis submitted in partial fulfilment of the requirements of the University of Wolverhampton for the degree of Doctor of Philosophy.Glioblastoma multiforme (GBM) is one of the most aggressive and lethal cancers with a poor prognosis. Advances in the treatment of GBM are limited due to several resistance mechanisms and limited drug delivery into the central nervous system (CNS) compartment by the blood-brain barrier (BBB) and by actions of the normal brain to counteract tumour-targeting medications. Hypoxia is common in malignant brain tumours such as GBM and plays a significant role in tumour pathobiology. It is widely accepted that hypoxia is a major driver of GBM malignancy. Although it has been confirmed that hypoxia induces GBM stem-like-cells (GSCs), which are highly invasive and resistant to all chemotherapeutic agents, the detailed molecular pathways linking hypoxia, GSC traits and chemoresistance remain obscure. Evidence shows that hypoxia induces cancer stem cell phenotypes via epithelial-to-mesenchymal transition (EMT), promoting therapeutic resistance in most cancers, including GBM. This study demonstrated that spheroid cultured GBM cells consist of a large population of hypoxic cells with CSC and EMT characteristics. GSCs are chemo-resistant and displayed increased levels of HIFs and NFκB activity. Similarly, the hypoxia cultured GBM cells manifested GSC traits, chemoresistance and invasiveness. These results suggest that hypoxia is responsible for GBM stemness, chemoresistance and invasiveness. GBM cells transfected with nuclear factor kappa B-p65 (NFκB-p65) subunit exhibited CSC and EMT markers indicating the essential role of NFκB in maintaining GSC phenotypes. The study also highlighted the significance of NFκB in driving chemoresistance, invasiveness, and the potential role of NFκB as the central regulator of hypoxia-induced stemness in GBM cells. GSC population has the ability of self-renewal, cancer initiation and development of secondary heterogeneous cancer. The very poor prognosis of GBM could largely be attributed to the existence of GSCs, which promote tumour propagation, maintenance, radio- and chemoresistance and local infiltration. In this study, we used Disulfiram (DS), a drug used for more than 65 years in alcoholism clinics, in combination with copper (Cu) to target the NFκB pathway, reverse chemoresistance and block invasion in GSCs. The obtained results showed that DS/Cu is highly cytotoxic to GBM cells and completely eradicated the resistant CSC population at low dose levels in vitro. DS/Cu inhibited the migration and invasion of hypoxia-induced CSC and EMT like GBM cells at low nanomolar concentrations. DS is an FDA approved drug with low toxicity to normal tissues and can pass through the BBB. Further research may lead to the quick translation of DS into cancer clinics and provide new therapeutic options to improve treatment outcomes in GBM patients

    Aflatoxins

    Get PDF
    The aflatoxin producing fungi Aspergillus flavus, A. parasiticus, and A. nomius, although they are also produced by other species of Aspergillus as well as by Emericella spp.(Telemorph). There are many types of aflatoxins, but the four main ones are aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), and aflatoxin G2 (AFG2, while aflatoxin M1 (AFM1) and M2 (AFM2) are the hydroxylated metabolites of AFB1 and AFB2. Aflatoxin B1, which is a genotoxic hepatocarcinogen, which presumptively causes cancer by inducing DNA, adducts leading to genetic changes in target liver cells. Cytochrome-P450 enzymes to the reactive intermediate AFB1–8, 9 epoxide (AFBO) which binds to liver cell DNA, resulting in DNA adducts, metabolize AFB1 Ingestion of contaminated food is the main source of exposure to aflatoxins, which adversely affect the health of both humans and animals. The compounds can cause acute or chronic toxic effects of a teratogenic, mutagenic, carcinogenic, immunotoxic or hepatotoxic character. You can reduce your aflatoxin exposure by buying only major commercial brands of food and by discarding that look moldy, discolored, or shriveled

    Extracellular Vesicles as Biomarkers and Therapeutic Targets in Cancers

    Get PDF
    Extracellular vesicles refer to exosomes, apoptotic bodies, microvesicles and large oncosomes, which are membrane bound structures secreted by cells including cancer cells. The pathological role and translational potential of extracellular vesicles (EVs) in cancers are receiving research attention recently. The cargoes of cancer-derived EVs retain the molecular properties of their sources and cancer cells actively release EVs into body fluids that are easy to access. EVs released from cancer cells not only promote cancer progression through the delivery of cancer-associated molecules but also reflect alterations in the state of cancers during therapy. They are considered promising biomarkers for therapeutic response evaluation, especially resistance to therapy and diagnostics. This chapter discusses the various roles of extracellular vesicles in cancers and their potential as therapeutic targets

    Mutational Profile of Human Papilloma Virus (HPV) Induced and Non-HPV Induced Head and Neck Squamous Cell Carcinoma

    Get PDF
    Head and Neck cancer accounts for approximately 900,000 cases and over 400,000 deaths annually worldwide. The primary risk factors associated with Head and Neck cancer include usage of tobacco, alcohol consumption, Human Papillomavirus (HPV) infection and Epstein-Barr virus (EBV) infection. Few subsites of Head and Neck Squamous Cell Carcinoma (HNSCC) are associated with Human Papilloma Virus (HPV) while others remain non-associated. The anatomical, physiological, genetic, protein profile and epigenetic changes that occur in both HPV-positive and HPV-negative HNSCC has been discussed in this chapter. The mutational profile plays a crucial role in the treatment of the HNSCC patients as the HPV-positive HNSCC patients have a better prognosis compared to the HPV-negative HNSCC patients. This chapter mainly focusses on the mutational profile of both HPV-associated and non-HPV associated HNSCC tumours

    Glomalin Arbuscular Mycorrhizal Fungal Reproduction, Lifestyle and Dynamic Role in Global Sustainable Agriculture for Future Generation

    Get PDF
    Glomalin, a type of glycoprotein produced by arbuscular mycorrhizal fungi in the phylum Glomeromycota, contributes to the mitigation of soil degradation. Moreover, AM fungi and glomalin are highly correlated with other soil physico-chemical parameters and are sensitive to changes in the environment; also, they have been recommended for monitoring the recovery of degraded soil or stages of soil degradation. AM fungi are commonly known as bio-fertilisers. Moreover, it is widely believed that the inoculation of AM fungi provides tolerance to host plants against various stressful situations like heat, salinity, drought, metals and extreme temperatures. AM fungi, being natural root symbionts, provide essential plant inorganic nutrients to host plants, thereby improving growth and yield under unstressed and stressed regimes. The role of AM fungi as a bio-fertiliser can potentially strengthen plants’ adaptability to changing environment. They also improve plant resilience to plant diseases and root system development, allowing for better nutrient absorption from the soil. As a result, they can be utilised as both a biofertilizer and a biocontrol agent. Present manuscript represents the potential of AM fungi as biostimulants can probably strengthen plants’ ability to change the agriculture system for green technology

    Epigenetics : a catalyst of plant immunity against pathogens

    Get PDF
    The plant immune system protects against pests and diseases. The recognition of stress-related molecular patterns triggers localised immune responses, which are often followed by longer-lasting systemic priming and/or up-regulation of defences. In some cases, this induced resistance (IR) can be transmitted to following generations. Such transgenerational IR is gradually reversed in the absence of stress at a rate that is proportional to the severity of disease experienced in previous generations. This review outlines the mechanisms by which epigenetic responses to pathogen infection shape the plant immune system across expanding time scales. We review the cis- and trans-acting mechanisms by which stress-inducible epigenetic changes at transposable elements (TEs) regulate genome-wide defence gene expression and draw particular attention to one regulatory model that is supported by recent evidence about the function of AGO1 and H2A.Z in transcriptional control of defence genes. Additionally, we explore how stress-induced mobilisation of epigenetically controlled TEs acts as a catalyst of Darwinian evolution by generating (epi)genetic diversity at environmentally responsive genes. This raises questions about the long-term evolutionary consequences of stress-induced diversification of the plant immune system in relation to the long-held dichotomy between Darwinian and Lamarckian evolution

    RNA pull-down-confocal nanoscanning (RP-CONA), a novel method for studying RNA/protein interactions in cell extracts that detected potential drugs for Parkinson’s disease targeting RNA/HuR complexes

    Get PDF
    MicroRNAs (miRNAs, miRs) are a class of small non-coding RNAs that regulate gene expression through specific base-pair targeting. The functional mature miRNAs usually undergo a two-step cleavage from primary miRNAs (pri-miRs), then precursor miRNAs (pre-miRs). The biogenesis of miRNAs is tightly controlled by different RNA-binding proteins (RBPs). The dysregulation of miRNAs is closely related to a plethora of diseases. Targeting miRNA biogenesis is becoming a promising therapeutic strategy. HuR and MSI2 are both RBPs. MiR-7 is post-transcriptionally inhibited by the HuR/MSI2 complex, through a direct interaction between HuR and the conserved terminal loop (CTL) of pri-miR-7-1. Small molecules dissociating pri-miR-7/HuR interaction may induce miR-7 production. Importantly, the miR-7 levels are negatively correlated with Parkinson’s disease (PD). PD is a common, incurable neurodegenerative disease causing serious motor deficits. A hallmark of PD is the presence of Lewy bodies in the human brain, which are inclusion bodies mainly composed of an aberrantly aggregated protein named α-synuclein (α-syn). Decreasing α-syn levels or preventing α-syn aggregation are under investigation as PD treatments. Notably, α-syn is negatively regulated by several miRNAs, including miR-7, miR-153, miR-133b and others. One hypothesis is that elevating these miRNA levels can inhibit α-syn expression and ameliorate PD pathologies. In this project, we identified miR-7 as the most effective α-syn inhibitor, among the miRNAs that are downregulated in PD, and with α-syn targeting potentials. We also observed potential post-transcriptional inhibition on miR-153 biogenesis in neuroblastoma, which may help to uncover novel therapeutic targets towards PD. To identify miR-7 inducers that benefit PD treatment by repressing α-syn expression, we developed a novel technique RNA Pull-down Confocal Nanoscaning (RP-CONA) to monitor the binding events between pri-miR-7 and HuR. By attaching FITC-pri-miR-7-1-CTL-biotin to streptavidin-coated agarose beads and incubating them in human cultured cell lysates containing overexpressed mCherry-HuR, the bound RNA and protein can be visualised as quantifiable fluorescent rings in corresponding channels in a confocal high-content image system. A pri-miR-7/HuR inhibitor can decrease the relative mCherry/FITC intensity ratio in RP-CONA. With this technique, we performed several small-scale screenings and identified that a bioflavonoid, quercetin can largely dissociate the pri-miR-7/HuR interaction. Further studies proved that quercetin was an effective miR-7 inducer as well as α-syn inhibitor in HeLa cells. To understand the mechanism of quercetin mediated α-syn inhibition, we tested the effects of quercetin treatment with miR-7-1 and HuR knockout HeLa cells. We found that HuR was essential in this pathway, while miR-7 hardly contributed to the α-syn inhibition. HuR can directly bind an AU-rich element (ARE) at the 3’ untranslated region (3’-UTR) of α-syn mRNA and promote translation. We believe quercetin mainly disrupts the ARE/HuR interaction and disables the HuR-induced α-syn expression. In conclusion, we developed and optimised RP-CONA, an on-bead, lysate-based technique detecting RNA/protein interactions, as well as identifying RNA/protein modulators. With RP-CONA, we found quercetin inducing miR-7 biogenesis, and inhibiting α-syn expression. With these beneficial effects, quercetin has great potential to be applied in the clinic of PD treatment. Finally, RP-CONA can be used in many other RNA/protein interactions studies

    Innate immunity and metabolism in the bovine ovarian follicle

    Get PDF
    Postpartum uterine disease in dairy cows is associated with reduced fertility. One of the first and most prevalent bacteria associated with uterine disease is Escherichia coli. The bacterial endotoxin, lipopolysaccharide (LPS), accumulates in the ovarian follicular fluid of animals with uterine disease. The granulosa cells of the ovarian follicle respond to LPS by secreting pro-inflammatory cytokines, such as interleukin (IL)-1a, IL-1b and IL-8, and oocyte health is perturbed. Dairy cows also experience metabolic energy stress in the postpartum period, which is associated with an increased risk of developing uterine disease and ovarian dysfunction. This thesis explored the crosstalk between innate immunity and metabolic energy stress in bovine granulosa cells and cumulus-oocyte complex. Firstly, we found that glycolysis, AMP-activated protein kinase and the mechanistic target of rapamycin, regulate the innate immune responses to LPS in granulosa cells isolated from bovine ovarian follicles. Activation of AMP-activated protein kinase decreased the LPS-induced secretion of IL-1a, IL-1b, and IL8, and was associated with shortened duration of ERK1/2 and JNK phosphorylation. Next, we found that decreasing the availability of cholesterol or inhibiting cholesterol biosynthesis using short-interfering RNA impaired the LPS-induced secretion of IL-1a and IL-1b by granulosa cells. Furthermore, metabolic energy stress or inhibiting cholesterol biosynthesis in the bovine cumulus-oocyte complex modulated the innate immune responses to LPS, and perturbed meiotic progression during in vitro maturation. Finally, we explored an in vivo model of uterine disease in heifers, using RNAseq to investigate alterations to the transcriptome of the reproductive tract. We found that uterine disease altered the transcriptome of the endometrium, oviduct, granulosa cells and oocyte, several months after bacterial infusion; these changes were most evident in the granulosa cells and oocyte of the ovarian follicle. The findings from this thesis imply that there is crosstalk between innate immunity and metabolism in the bovine ovarian follicle

    What is the importance of sperm subpopulations?

    Get PDF
    .The study of sperm subpopulations spans three decades. The origin, meaning, and practical significance, however, are less clear. Current technology for assessing sperm morphology (CASA-Morph) and motility (CASA-Mot) has enabled the accurate evaluation of these features, and there are many options for data classification. Subpopulations could occur as a result of the stage of development of each spermatozoon in the subpopulation. Spermatogenesis might contribute to the production of these subpopulations. Insights from evolutionary biology and recent molecular research are indicative of the diversity among male gametes that could occur from unequal sharing of transcripts and other elements through cytoplasmic bridges between spermatids. Sperm cohorts exiting the gonads would contain different RNA and protein contents, affecting the spermatozoon physiology and associations with the surrounding environmental milieu. Subsequently, these differences could affect how spermatozoa interact with the environmental milieu (maturation, mixing with seminal plasma, and interacting with the environmental milieu, or female genital tract and female gamete). The emergence of sperm subpopulations as an outcome of evolution, related to the reproductive strategies of the species, genital tract structures, and copulatory and fertilization processes. This kind of approach in determining the importance of sperm subpopulations in fertilization capacity should have a practical impact for conducting reproductive technologies, inspiring and enabling new ways for the more efficient use of spermatozoa in the medical, animal breeding, and conservation fields. This manuscript is a contribution to the Special Issue in memory of Dr. Duane GarnerS
    corecore