121,109 research outputs found

    Baryon Tri-local Interpolating Fields

    Full text link
    We systematically investigate tri-local (non-local) three-quark baryon fields with U_L(2)*U_R(2) chiral symmetry, according to their Lorentz and isospin (flavor) group representations. We note that they can also be called as "nucleon wave functions" due to this full non-locality. We study their chiral transformation properties and find all the possible chiral multiplets consisting J=1/2 and J=3/2 baryon fields. We find that the axial coupling constant |g_A| = 5/3 is only for nucleon fields belonging to the chiral representation (1/2,1)+(1,1/2) which contains both nucleon fields and Delta fields. Moreover, all the nucleon fields belonging to this representation have |g_A| = 5/3.Comment: 8 pages, 3 tables, accepted by EPJ

    Logarithmic conformal field theory approach to topologically massive gravity

    Full text link
    We study the topologically massive gravity at the chiral point (chiral gravity) by using the logarithmic conformal field theory. Two new tensor fields of ψnew\psi^{new} and XX are introduced for a candidate of propagating physical field at the chiral point. However, we show that (ψnew,ψL\psi^{new},\psi^L) form a dipole ghost pair of unphysical fields and XX is not a primary. This implies that there is no physically propagating degrees of freedom at the chiral point.Comment: 11 page

    Monte Carlo Studies of the Ordering of the Three-Dimensional Isotropic Heisenberg Spin Glass in Magnetic Fields

    Full text link
    Spin and chirality orderings of the three-dimensional Heisenberg spin glass under magnetic fields are studied by large-scale equilibrium Monte Carlo simulations. It is found that the chiral-glass transition and the chiral-glass ordered state, which are essentially of the same character as their zero-field counterparts, occur under magnetic fields. The chiral-glass ordered state exhibits a one-step-like peculiar replica-symmetry breaking in the chiral sector, while it does not accompany the spin-glass order perpendicular to the applied field. Critical perperties of the chiral-glass transition are different from those of the standard Ising spin glass. Magnetic phase diagram of the model is constructed, which reveals that the chiral-glass state is quite robust against magnetic fields. The chiral-glass transition line has a character of the Gabay-Toulouse line of the mean-field model, yet its physical origin being entirely different. These numerical results are discussed in light of the recently developed spin-chirality decoupling-recoupling scenario. Implication to experimental phase diagram is also discussed.Comment: 23 pages, 23 figure

    Axially symmetric multi-baryon solutions and their quantization in the chiral quark soliton model

    Full text link
    In this paper, we study axially symmetric solutions with B=25B=2-5 in the chiral quark soliton model.In the background of axially symmetric chiral fields, the quark eigenstates and profile functions of the chiral fields are computed self-consistently. The resultant quark bound spectrum are doubly degenerate due to the symmetry of the chiral field. Upon quantization, various observable spectra of the chiral solitons are obtained. Taking account of the Finkelstein-Rubinstein constraints, we show that our results exactly coincide with the physical observations for B=2 and 4 while B=3 and 5 do not.Comment: 19 pages, 11 figures, 5 table

    Properties of Semi-Chiral Superfields

    Full text link
    Whenever the N=(2,2) supersymmetry algebra of non-linear sigma-models in two dimensions does not close off-shell, a holomorphic two-form can be defined. The only known superfields providing candidate auxiliary fields to achieve an off-shell formulation are semi-chiral fields. Such a semi-chiral description is only possible when the two-form is constant. Using an explicit example, hyper-Kahler manifolds, we show that this is not always the case. Finally, we give a concrete construction of semi-chiral potentials for a class of hyper-Kahler manifolds using the duality exchanging a pair consisting of a chiral and a twisted-chiral superfield for one semi-chiral multiplet.Comment: LaTeX, 17 page