33,717 research outputs found

    Dynamics of the Chiral Magnetic Effect in a weak magnetic field

    Full text link
    We investigate the real-time dynamics of the chiral magnetic effect in quantum electrodynamics (QED) and quantum chromodynamics (QCD). We consider a field configuration of parallel (chromo)electric and (chromo)magnetic fields with a weak perpendicular electromagnetic magnetic field. The chiral magnetic effect induces an electromagnetic current along this perpendicular magnetic field, which we will compute using linear response theory. We discuss specific results for a homogeneous sudden switch-on and a pulsed (chromo)electric field in a static and homogeneous (chromo)magnetic field. Our methodology can be easily extended to more general situations. The results are useful for investigating the chiral magnetic effect with heavy ion collisions and with lasers that create strong electromagnetic fields. As a side result we obtain the rate of chirality production for massive fermions in parallel electric and magnetic fields that are static and homogeneous.Comment: 13 pages, 7 figures, revte

    Topological responses from chiral anomaly in multi-Weyl semimetals

    Get PDF
    Multi-Weyl semimetals are a kind of topological phase of matter with discrete Weyl nodes characterized by multiple monopole charges, in which the chiral anomaly, the anomalous nonconservation of an axial current, occurs in the presence of electric and magnetic fields. Electronic transport properties related to the chiral anomaly in the presence of both electromagnetic fields and axial electromagnetic fields in multi-Weyl semimetals are systematically studied. It has been found that the anomalous Hall conductivity has a modification linear in the axial vector potential from inhomogeneous strains. The axial electric field leads to an axial Hall current that is proportional to the distance of Weyl nodes in momentum space. This axial current may generate chirality accumulation of Weyl fermions through delicately engineering the axial electromagnetic fields even in the absence of external electromagnetic fields. Therefore, this work provides a nonmagnetic mechanism of generation of chirality accumulation in Weyl semimetals and might shed new light on the application of Weyl semimetals in the emerging field of valleytronics.Comment: 13 pages, 2 tables, 2 figures, accepted by Physical Review

    Generalized Electromagnetic fields in Chiral Medium

    Full text link
    The time dependent Dirac-Maxwell's Equations in presence of electric and magnetic sources are written in chiral media and the solutions for the classical problem are obtained in unique simple and consistent manner. The quaternion reformulation of generalized electromagnetic fields in chiral media has also been developed in compact, simple and consistent manner

    Negative reflections of electromagnetic waves in chiral media

    Get PDF
    We investigate the reflection properties of electromagnetic/optical waves in isotropic chiral media. When the chiral parameter is strong enough, we show that an unusual \emph{negative reflection} occurs at the interface of the chiral medium and a perfectly conducting plane, where the incident wave and one of reflected eigenwaves lie in the same side of the boundary normal. Using such a property, we further demonstrate that such a conducting plane can be used for focusing in the strong chiral medium. The related equations under paraxial optics approximation are deduced. In a special case of chiral medium, the chiral nihility, one of the bi-reflections disappears and only single reflected eigenwave exists, which goes exactly opposite to the incident wave. Hence the incident and reflected electric fields will cancel each other to yield a zero total electric field. In another word, any electromagnetic waves entering the chiral nihility with perfectly conducting plane will disappear.Comment: 5 pages, 5 figure