1,246,893 research outputs found

    Cell-Culture Measurements Using Voltage Oscillations

    Get PDF
    A comprehensive system for real-time monitoring of a set of cell-cultures using a Voltage Oscillation (VO) methodology is proposed. The main idea is to connect the bio-electrical elements (electrodes & cell-culture) in such a way that sequentially a suitable electrical oscillator, which only uses a DC power source, is built. Using the employed electrical models given in [1, 2], the attained oscillation parameters (frequency and amplitude) can be directly related to the biological test. A digital circuitry is developed to pick-up the experimental measurements, which are gathered and shown in real-time in a web application.Ministerio de EconomĂ­a y Competitividad TEC2013-46242-C3-1-

    Cell culture-derived flu vaccine: Present and future

    Get PDF
    ProducciĂłn CientĂ­ficaThe benefit of influenza vaccines is difficult to estimate due to the complexity of accurately assessing the burden of influenza. To improve the efficacy of influenza vaccines, vaccine manufacturers have developed quadrivalent influenza vaccine (QIV) formulations for seasonal vaccination by including both influenza B lineages. Three parallel approaches for producing influenza vaccines are attracting the interest of many vaccine manufacturing companies. The first and oldest is the conventional egg-derived influenza vaccine, which is used by the current licensed influenza vaccines. The second approach is a cell culture-derived influenza vaccine, and the third and most recent is synthetic vaccines. Here, we analyze the difficulties with vaccines production in eggs and compare this to cell culture-derived influenza vaccines and discuss the future of cell culture-derived QIVs.Keywords: Influenza vaccine, cell culture-derived, quadrivalent

    Phytochemical Study of Cell Culture Jatropha Curcas

    Full text link
    Jatropha curcas belongs to the Euphorbiaceae family which has potential economically. This plant has been reported to contain toxic compounds such as curcin and phorbol ester and its derivatives. These compounds may become a problem if J. curcas will be explored as a source of biofuel. In order to provide safety plants, the research on the study of phytochemical and initiation of cell and organ culture have been carried out. J curcas which has been collected from different regions in Indonesia showed to contain relatively the same profile of chemical contents. Dominant compounds that were detected by GCMS are hidrocarbon such as 2-heptenal, decadienal, hexsadecane, pentadecane, cyclooctane etc, fatty acid such as oktadecanoate acid, etthyl linoleate, ethyl stearate, heksadecanoate acid and steroid such as stigmasterol, fucosterol, sitosterol. No phorbol ester and its derivatives have been detected yet by the GCMS method. Callus and suspension cultures of J. curcas have been established to be used for further investigation

    Expression of Tumor Assosiated and Epithelial-mesenchymal Transition Markers in 2d and 3d Cell Cultures of Mcf-7

    Get PDF
    The target effects on the expression of epithelial-mesenchymal transition regulation molecules are promising for cancer therapy, including breast cancer. 3D cell culture is a model for studying epithelial-mesenchymal transition in vitro and may become a test system for anticancer therapy.Aim of research. The aim of this research was to evaluate and compare the expression of tumor associated and epithelial-mesenchymal transition markers in tumor cells of breast adenocarcinoma (MCF-7 cell line) in 2D and 3D cell culture.Methods. For realization of the aim MCF-7 cell line (breast adenocarcinoma) was chosen as an experimental model in vitro. The monolayer cell culture was cultured in standard conditions (37 0C, 5 % CO2, humidity 95 %). The initial density of inoculated cells was 2 x 104 cells/cm2. The cells were incubated for two days before their use in the experiment. For the initial generation of spheroids the monolayer cell culture was removed off the substrate after the four days of incubation, using 0,25 % Trypsin-EDTA, and placed in nutrient medium with 5 % carboxymethyl cellulose (Bio-Rad, USA) at concentration of 5 x 105 cells/ml. Then the plates were incubated on an orbital shaker (Orbital shaker, PSU-10i, Biosan, Latvia) at 50 rpm for 3–5 hours. Half of culture medium was replenished every 3 days. A spheroid culture was maintained for 14 days. Detection of markers (ER, p53, EpCAM, vim, AE1/AE3, panCK, EGFR) in 2D and 3D cell culture was performed using immunohistochemistry method with primary monoclonal antibodies. Histological samples of cells were photographed to compare the morphological characteristics and the expression of proteins in monolayer and spheroid cultureResults. The results demonstrated that the percentage of tumor marker positive cells (ER+, EGFR+, EpCAM+, panCK+, AE1/AE3+) in monolayer culture is 1.25–2 times than more in spheroid culture. In contrast, tumor spheroids consist of fewer cells with the expression of epithelial markers such as EpCAM and AE1/AE3, but they contain a large number of cells that expressed mesenchymal marker vimentin by 5 % and p53 by 10 %. This may indicate that the cells acquire a mesenchymal phenotype. However, tumor cells of monolayer cell culture were not expressed vimentin.Conclusions. Our results demonstrated the differences of expression of tumor associated and epithelial-mesenchymal transition markers in 2D and 3D breast cancer cell cultures. Thus, the percentage of epithelial markers (Cytokeratines and epithelial cell adhesion molecule) in tumor spheroids is less than in cells of monolayer however spheroids cells begin expressing a mesenchymal marker – vimentin. In 3D cell culture only the outer cell layers expressed tumor associated proteins unlike 2D cell culture in which all of cells showed equally expression. Reduced of manifestation of tumor associated markers in 3D cell culture may indicate an increase of stem properties. These data showed that 3D cell culture more than 2D cell culture characterized processes of epithelial-mesenchymal transition

    A new cell primo-culture method for freshwater benthic diatom communities

    Get PDF
    A new cell primo-culture method was developed for the benthic diatom community isolated from biofilm sampled in rivers. The approach comprised three steps: (1) scraping biofilm from river pebbles, (2) diatom isolation from biofilm, and (3) diatom community culture. With a view to designing a method able to stimulate the growth of diatoms, to limit the development of other microorganisms, and to maintain in culture a community similar to the original natural one, different factors were tested in step 3: cell culture medium (Chu No 10 vs Freshwater “WC” medium modified), cell culture vessel, and time of culture. The results showed that using Chu No 10 medium in an Erlenmeyer flask for cell culture was the optimal method, producing enough biomass for ecotoxicological tests as well as minimising development of other microorganisms. After 96 h of culture, communities differed from the original communities sampled in the two rivers studied. Species tolerant of eutrophic or saprobic conditions were favoured during culture. This method of diatom community culture affords the opportunity to assess, in vitro, the effects of different chemicals or effluents (water samples andindustrial effluents) on diatom communities, as well as on diatom cells, from a wide range of perspectives

    A Novel 2.5D Culture Platform to Investigate the Role of Stiffness Gradients on Adhesion-Independent Cell Migration

    Get PDF
    Current studies investigating the role of biophysical cues on cell migration focus on the use of culture platforms with static material parameters. However, migrating cells in vivo often encounter spatial variations in extracellular matrix stiffness. To better understand the effects of stiffness gradients on cell migration, we developed a 2.5D cell culture platform where cells are sandwiched between stiff tissue culture plastic and soft alginate hydrogel. Under these conditions, we observed migration of cells from the underlying stiff substrate into the alginate matrix. Observation of migration into alginate in the presence of integrin inhibition as well as qualitative microscopic analyses suggested an adhesion-independent cell migration mode. Observed migration was dependent on alginate matrix stiffness and the RhoA-ROCK-myosin-II pathway; inhibitors specifically targeting ROCK and myosin-II arrested cell migration. Collectively, these results demonstrate the utility of the 2.5D culture platform to advance our understanding of the effects of stiffness gradients and mechanotransductive signaling on adhesion-independent cell migration

    Improving single-cell cloning workflow for gene editing in human pluripotent stem cells

    Get PDF
    The availability of human pluripotent stem cells (hPSCs) and progress in genome engineering technology have altered the way we approach scientific research and drug development screens. Unfortunately, the procedures for genome editing of hPSCs often subject cells to harsh conditions that compromise viability: a major problem that is compounded by the innate challenge of single-cell culture. Here we describe a generally applicable workflow that supports single-cell cloning and expansion of hPSCs after genome editing and single-cell sorting. Stem-Flex and RevitaCell supplement, in combination with Geltrex or Vitronectin (VN), promote reliable single-cell growth in a feeder-free and defined environment. Characterization of final genome-edited clones reveals that pluripotency and normal karyotype are retained following this single-cell culture protocol. This time-efficient and simplified culture method paves the way for high-throughput hPSC culture and will be valuable for both basic research and clinical applications. Keywords: Human pluripotent stem cells, Embryonic stem cells, Single-cell cloning, Induced pluripotent stem cells, hPSCs, hESCs, Genome engineering, CRISPR-Cas

    Quantitative volumetric Raman imaging of three dimensional cell cultures

    Get PDF
    The ability to simultaneously image multiple biomolecules in biologically relevant three-dimensional (3D) cell culture environments would contribute greatly to the understanding of complex cellular mechanisms and cell-material interactions. Here, we present a computational framework for label-free quantitative volumetric Raman imaging (qVRI). We apply qVRI to a selection of biological systems: human pluripotent stem cells with their cardiac derivatives, monocytes and monocyte-derived macrophages in conventional cell culture systems and mesenchymal stem cells inside biomimetic hydrogels that supplied a 3D cell culture environment. We demonstrate visualization and quantification of fine details in 3D cell shape, cytoplasm, nucleus, lipid bodies and cytoskeletal structures in 3D with unprecedented biomolecular specificity for vibrational microspectroscopy
    • …