2,731 research outputs found

    Modeling, forecasting and trading the EUR exchange rates with hybrid rolling genetic algorithms: support vector regression forecast combinations

    Get PDF
    The motivation of this paper is to introduce a hybrid Rolling Genetic Algorithm-Support Vector Regression (RG-SVR) model for optimal parameter selection and feature subset combination. The algorithm is applied to the task of forecasting and trading the EUR/USD, EUR/GBP and EUR/JPY exchange rates. The proposed methodology genetically searches over a feature space (pool of individual forecasts) and then combines the optimal feature subsets (SVR forecast combinations) for each exchange rate. This is achieved by applying a fitness function specialized for financial purposes and adopting a sliding window approach. The individual forecasts are derived from several linear and non-linear models. RG-SVR is benchmarked against genetically and non-genetically optimized SVRs and SVMs models that are dominating the relevant literature, along with the robust ARBF-PSO neural network. The statistical and trading performance of all models is investigated during the period of 1999–2012. As it turns out, RG-SVR presents the best performance in terms of statistical accuracy and trading efficiency for all the exchange rates under study. This superiority confirms the success of the implemented fitness function and training procedure, while it validates the benefits of the proposed algorithm

    Support Vector Regression for Non-Stationary Time Series

    Get PDF
    The difficulty associated with building forecasting models for non-stationary and volatile data has necessitated the development and application of new sophisticated techniques that can handle such data. Interestingly, there are a lot of real-world phenomena where data that are “difficult to analyze” are generated. One of these is the stock market where data series generated are often hard to forecast because of their peculiar characteristics. In particular, the stock market has been referred to as a complex environment and financial time series forecasting is often tagged as the most challenging application of time series forecasting. In this study, a novel approach known as Support Vector Regression (SVR) for forecasting non-stationary time series was adopted and the feasibility of applying this method to five financial time series was examined. Prior to implementing the SVR algorithm, three different methods of transformation namely Relative Difference in Percentages (RDP), Z-score and Natural Logarithm transformations were applied to the data series and the best prediction results obtained along with the associated transformation technique was presented. Our study indicated that the Z-score transformation is the best scaling method for financial time series, exhibiting superior performance than the other two transformations on the basis of five different performance measures. To determine the optimum values of the SVR parameters, a cross-validation method was implemented. For this purpose, the value of C and Δ was varied from 5 to 100, and 0.001 and 0.1 respectively. The cross-validation method, though computationally expensive, is better than other proposed techniques for determining the values of these parameters. Another highlight of this study is the comparison of the SVR results to that obtained using 5-day Simple Moving Averages (SMA). The SMA was selected as a comparative method because it has been identified as the most popular quantitative forecasting method used by US corporations. Discussions with financial analysts also suggest that the SMA is one of the widely used in the financial industry. The popularity of the SMA can be explained by the fact that it is easy and cheap to use and it produces forecasts that can be easily interpreted by econometricians and other interested practitioners

    Evaluation Study of Linear Combination Technique for SVM related Time Series Forecasting

    Get PDF
    Time series forecasting and SVM are widely used in many domains, for example, smart city and digital services. Focusing on SVM related time series forecasting model, in this paper we empirical investigate the performance of eight linear combination techniques by using M3 competition dataset which includes 3003 time series. The results reveals that the “forecast combination puzzle” is not exist for combining SVM related forecasting model as the simple average is almost the worst combination technique

    An Overview of Electricity Demand Forecasting Techniques

    Get PDF
    Load forecasts are extremely important for energy suppliers and other participants in electric energy generation, transmission, distribution and markets. Accurate models for electric power load forecasting are essential to the operation and planning of a utility company. Load forecasts are extremely important for energy suppliers and other participants in electric energy generation, transmission, distribution and markets. This paper presents a review of electricity demand forecasting techniques. The various types of methodologies and models are included in the literature. Load forecasting can be broadly divided into three categories: short-term forecasts which are usually from one hour to one week, medium forecasts which are usually from a week to a year, and long-term forecasts which are longer than a year.  Based on the various types of studies presented in these papers, the load forecasting techniques may be presented in three major groups: Traditional Forecasting technique, Modified Traditional Technique and Soft Computing Technique. Keywords: Electricity Demand, Forecasting Techniques, Soft Computing, Regression method, SVM

    Generative Adversarial Networks for Financial Trading Strategies Fine-Tuning and Combination

    Get PDF
    Systematic trading strategies are algorithmic procedures that allocate assets aiming to optimize a certain performance criterion. To obtain an edge in a highly competitive environment, the analyst needs to proper fine-tune its strategy, or discover how to combine weak signals in novel alpha creating manners. Both aspects, namely fine-tuning and combination, have been extensively researched using several methods, but emerging techniques such as Generative Adversarial Networks can have an impact into such aspects. Therefore, our work proposes the use of Conditional Generative Adversarial Networks (cGANs) for trading strategies calibration and aggregation. To this purpose, we provide a full methodology on: (i) the training and selection of a cGAN for time series data; (ii) how each sample is used for strategies calibration; and (iii) how all generated samples can be used for ensemble modelling. To provide evidence that our approach is well grounded, we have designed an experiment with multiple trading strategies, encompassing 579 assets. We compared cGAN with an ensemble scheme and model validation methods, both suited for time series. Our results suggest that cGANs are a suitable alternative for strategies calibration and combination, providing outperformance when the traditional techniques fail to generate any alpha

    Forecasting US unemployment with radial basis neural networks, kalman filters and support vector regressions

    Get PDF
    This study investigates the efficiency of the radial basis function neural networks in forecasting the US unemployment and explores the utility of Kalman filter and support vector regression as forecast combination techniques. On one hand, an autoregressive moving average model, a smooth transition autoregressive model and three different neural networks architectures, namely a multi-layer perceptron, recurrent neural network and a psi sigma network are used as benchmarks for our radial basis function neural network. On the other hand, our forecast combination methods are benchmarked with a simple average and a least absolute shrinkage and selection operator. The statistical performance of our models is estimated throughout the period of 1972–2012, using the last 7 years for out-of-sample testing. The results show that the radial basis function neural network statistically outperforms all models’ individual performances. The forecast combinations are successful, since both Kalman filter and support vector regression techniques improve the statistical accuracy. Finally, support vector regression is found to be the superior model of the forecasting competition. The empirical evidence of this application are further validated by the use of the modified Diebold–Mariano test

    Adaptive Grey Wolf Optimization Technique for Stock Index Price Prediction on Recurring Neural Network Variants

    Get PDF
    In this paper, we propose a Long short-term memory (LSTM) and Adaptive Grey Wolf Optimization (GWO)--based hybrid model for predicting the stock prices of the Major Indian stock indices, i.e., Sensex. The LSTM is an advanced neural network that handles uncertain, nonlinear, and sequential data. The challenges are its weight and bias optimization. The classical backpropagation has issues of dangling on local minima or overfitting the dataset. Thus, we propose a GWO-based hybrid approach to evolve the weights and biases of the LSTM and the dense layers. We have made the GWO more robust by introducing an approach to improve the best possible solution by using the optimal ranking of the wolves. The proposed model combines the GWO with Adam Optimizer to train the LSTM. Apart from the LSTM, we have also implemented the Adaptive GWO on other variants of Recurring Neural Networks (RNN) like LSTM, Bi-Directional LSTM, Gated Recurrent Units (GRU), and Bi-Directional GRU and computed the corresponding results. The Adaptive GWO here evolves the initial weights and biases of the above-discussed neural networks. In this research, we have also compared the forecasting efficiency of our proposed work with a particle-warm optimization (PSO) based hybrid LSTM model, simple Grey-wolf Optimization (GWO), and Adaptive PSO. According to the experimental findings, the suggested model has effectively used the best initial weights, and its results are the best overall
    • 

    corecore