1 research outputs found

    Monitoring Methods of Phytoplankton in the Baltic Sea and Kattegat-Skagerrak

    No full text
    Rapporten syftar till att ge underlag f√∂r revison av svensk nationell marin milj√∂√∂vervakning relaterad till v√§xtplankton. Sveriges milj√∂m√•l, EU:s Havsmilj√∂direktiv och Vattendirektiv samt Helsingfors- och Oslo-Pariskonventionen st√§ller krav p√• v√§xtplankton√∂vervakning. Speciella krav g√§llande √∂vervakning av algblomningar av biotoxinproducerande arter g√§ller i omr√•den d√§r det bedrivs akvakultur (EU:s hygiendirektiv). Dessutom ger f√∂r√§ndringar relaterade till ett f√∂r√§ndrat klimat ytterligare anledningar till f√∂rb√§ttrad v√§xtplankton√∂vervakning. F√∂rslag i korthet: 1. Var f√∂rsiktig vid f√∂r√§ndringar av existerande l√•ngsiktig milj√∂√∂vervakning. √Ąndra inte metodik n√§r det finns l√•nga tidsserier utan l√§gg till ny metodik och nya parametrar. F√∂r√§ndringar som kan genomf√∂ras fr√•n √•r 2015 2. Forts√§tt med samma analysmetodik f√∂r v√§xtplankton som idag (Uterm√∂hl-metoden) men l√§gg till analys av en st√∂rre volym f√∂r att f√•nga upp ovanliga arter och mikrozooplankton. 3. Anv√§nd kol som enhet f√∂r v√§xtplanktonbiomassa ist√§llet f√∂r biovolym. 4. S√§kerst√§ll att samma metodik anv√§nds i alla havsomr√•den runt Sverige. a. L√§gg till autotrofa picoplankton d√§r det saknas (egentliga √Ėstersj√∂n och V√§sterhavet). b. Klorofyllm√§tningar b√∂r ske b√•de i slangprover och i prover fr√•n vattenh√§mtare i alla omr√•den (Bottniska viken avviker idag). 5. H√∂gfrekvent provtagning b√∂r ske var fjortonde dag p√• s√• kallade vaktpost stationer (sentinel sites), varje vecka √§r l√§mpligt under blomningar. 6. Alla st√∂rre havsbass√§nger runt Sverige b√∂r ha en h√∂gfrekvent utsj√∂station och en h√∂gfrekvent kuststation f√∂r h√∂gkvalitativ v√§xtplankton√∂vervakning av artsammans√§ttning, cellantal och biomassa baserad p√• cellvolymsm√§tningar. Dessutom b√∂r h√∂gfrekvent provtagning av klorofyll ske vid tre utsj√∂stationer och tre kuststationer. 7. Anv√§nd s√• kallade FerryBox-system f√∂r att h√∂ja provtagningsfrekvensen (vattenprover) och f√∂r att m√§ta klorofyllfluorescens, en s√• kallad proxy f√∂r v√§xtplanktonbiomassa. 8. M√§t phycocyaninfluorescens vid CTD-kast under milj√∂√∂vervakningsexpeditioner f√∂r att f√• ett ungef√§rligt m√•tt p√• utbredningen av cyanobakterier i djupled. 9. M√§t ljus i luft och i vatten vid CTD-kast vid milj√∂√∂vervakningsexpeditioner f√∂r att kunna ber√§kna ljustutsl√§ckningskoefficient vid utvalda v√•gl√§ngder ¬† F√∂r√§ndringar som b√∂r utv√§rderas under 1-3 √•r f√∂r att inf√∂ras t.ex. √•r 2018 10. Dokumentera v√§xtplankton genom digital fotografering vid mikroskopering. Spara bilder hos den nationella datav√§rden 11. Spara planktonprover i en provbank f√∂r framtida analys med metoder som inte √§r k√§nda idag. 12. Inf√∂r s√• kallad Automated Imaging Flow Cytometry f√∂r analys av v√§xtplankton som komplement till mikroskopi 13. Inf√∂r molekyl√§rbiologisk metodik, t.ex. barcoding av 16S och 18S rDNA, som komplement till optiska analyser 14. Anv√§nd det nya n√§tverket av oceanografiska m√§tbojar runt Sveriges kuster f√∂r m√§tning av klorofyllfluorescens, ljusutsl√§ckning vid utvalda v√•gl√§ngder (~siktdjup), samt f√∂r automatisk v√§xtplanktonprovtagning 15. Inf√∂r satellitbaserad fj√§rranalys f√∂r m√§tning klorofyll, utbredning av cyanobakterieblomningar samt blomningar av coccolithophorider som en integrerad del av den nationella marina milj√∂√∂vervakningen. De nya ESA satelliterna Sentinel 3a och 3b (uppskjutning planerad tidigast i april 2015) b√∂r anv√§ndas f√∂r m√§tning av s√• kallad ocean colour. Datakvalitet m√•ste kontrolleras genom j√§mf√∂relser med in situ m√§tningar.The aim of the report is to give input to the revision of the Swedish National Marine Monitoring Program with regard to phytoplankton. The Swedish environmental objectives, the EU Marine Strategy Framework Directive, the Water Directive as well as the Helsinki and Oslo-Paris conventions all include requirements for phytoplankton monitoring. In areas where aquaculture is carried out special demands for monitoring harmful algae, i.e. biotoxin producing species, are in effect (EU hygiene directive). Climate change also result in needs for improved phytoplankton monitoring. A summary of suggestions: 1. Use caution when making changes in long term monitoring programs. Do not change methodology if there are long time series based on a certain method; instead add new methods and new parameters. Changes that can be implemented in year 2015 2. Continue using existing analysis method for phytoplankton (the Uterm√∂hl method) but add analysis of large volume samples to get better data on rare species and micro-zooplankton. 3. Use carbon as the unit for phytoplankton biomass instead of bio-volume. 4. Make sure that the same methods are used in all sea areas surrounding Sweden. a. Add analysis of autotrophic picoplankton where this is missing (the Baltic Proper, the Kattegat and the Skagerrak) b. Chlorophyll analyses should be made both on samples collected using tube sampling and samples collected at discrete depths (the Gulf of Bothnia is the sea area that differ from the others) 5. High frequent sampling should be carried out at sentinel sites every two weeks, weekly during algal blooms. 6. All major sea basins surrounding Sweden should have one high frequent off shore sentinel site and one high frequent coastal sentinel site for high quality phytoplankton monitoring for biodiversity, cell numbers and biomass based on cell volume measurements. In addition high frequent sampling for chlorophyll should be carried out at three off shore and three coastal sites in each major basin. 7. Use FerryBox-systems to increase the water sampling frequency and to measure chlorophyll fluorescence, a proxy for phytoplankton biomass. 8. Measure the fluorescence for phycocyanin when doing CTD-casts during monitoring cruises with research vessels to get information on the vertical distribution of cyanobacteria. 9. Carry out measurements of irradiance in air and in water when making CTD-casts during monitoring cruises to calculate the attenuation coefficient at selected wavelengths. Changes that should be evaluated during one to three years to be fully implemented e.g. in 2018 10. Document phytoplankton using digital photography during microscopy. Save images at the national data host archive 11. Save phytoplankton in a sample bank for future analysis using methids unknown today. 12. Use automated imaging flow cytometry for phytoplankton analysis as a complement to microscopy. 13. Use molecular biological methodology, e.g. 16S and 18S rDNA barcoding, as a complement to biodiversity analysis methods based on analysing morphology of organisms. 14. Use the new network of coastal instrumented buoys around the coast of Sweden to measure chlorophyll fluorescence, light attenuation at selected wavelength (~Secchi depth) and for automated water sampling for phytoplankton analysis. 15. Integrate satellite remote sensing of ocean colour for estimating chlorophyll a, the distribution of cyanobacteria blooms and blooms of coccolithophorids in the National Marine Monitoring Programme. The new ESA satellites Sentinel 3a and 3b are planned to be launched at the earliest in April 2015. The quality of data must be compared to data from in situ sampling.¬†
    corecore