41,385 research outputs found

    Hydraulic conductivity and swelling pressure of GCLs using polymer treated clays to high concentration CaCl(2) solutions

    Get PDF
    A Geosynthetic Clay Liner (GCL) is a frequently used h ydraulic barrier system designed to impede the flow of contaminated leachate into the environment. The main objective of this barrier system is to maintain a low hydraulic conductivity that is determined by the bentonite fraction. In this study, calcium bentonite, natural sodium bentonites, and sodium activated bentonite were treated with the HYPER clay technique. This involves the adsorption of an anionic polymer, Sodium CarboxyMethylCellulose (Na-CMC) onto the surface of the clay material. The purpose of this research was to show the beneficial effect of the HYPER clay treatment on the swelling and hydraulic performance, while the bentonite is permeated with high concentration CaCl2 solutions. The test results showed that swelling and hydraulic performance increased with Na-CMC treatment, regardless of the type of bentonite that was used. Additionally, a powdered Na CMC configuration provided higher swelling and hydraulic performance compared to a granular configuration

    Enhancing the performance of Xanthan gum in water-based mud systems using an environmentally friendly biopolymer

    Get PDF
    Xanthan gum is commonly used in drilling fluids to provide viscosity, solid suspension, and fluid-loss control. However, it is sensitive to high temperatures and not tolerant of field contaminants. This paper presents an experimental study on the effects of an eco-friendly biopolymer (diutan gum) on xanthan gum (XC) in a water-based bentonite mud. Laboratory experiments were carried out for different compositions of the biopolymers in water-based bentonite muds formulated without salt and in water-based bentonite muds containing sodium chloride (NaCl). The rheological properties of the water-based bentonite muds formulated with XC (2 Ibm) and those of the water-based bentonite muds prepared using XC (1Ibm) and diutan gum (1Ibm) were measured using Model 1100 viscometer after aging at 25 °C, 100 °C, and 120 °C for 16 h. The API fluid loss and filter cake of the mud formulations were measured using HTHP filter press. The properties of the water-based bentonite muds containing only XC were compared with those of the water-based bentonite muds containing XC and diutan gum. Presented results show that combining diutan gum and xanthan gum in a ratio of 1:1 in a water-based bentonite mud enhances its performance with respect to fluid properties—apparent viscosity, gel strength, yield points, YP/PV ratio, LSRV, n, and K. The fluid formulations also showed favorable mud cake building characteristics. Experimental data also indicate a 16%, 19%, and 34% reduction in API fluid loss values for the water-based benitoite muds containing XC in the presence of diutan gum after aging at 25 °C, 100 °C, and 120 °C for 16 h, respectively. Experimental results also show that the water-based benitoite mud containing XC and diutan gum would cause less formation damage and was tolerant of contamination with a monovalent cation (Na+). The synergy of xanthan gum and diutan gum can, therefore, improve the performance of water-based drilling fluids

    Effect of clay amendments on nitrogen leaching and forms in a sandy soil

    Get PDF
    Nitrogen (N) leaching in sandy soil decreases fertiliser use efficiency and may depress plant production. Application of high cation exchange capacity (CEC) materials (e.g. high activity clay minerals) is hypothesized to reduce N leaching and increase plant N uptake in sandy soils. However, the mechanism of leaching in sands with clay amendment is not understood. A column experiment was conducted to determine N leaching and N concentration in soil solution in a sandy soil (1.4 % clay) with three soil amendments (nil, clay soil and bentonite clay) and three fertiliser rates (0, 28 N 17 P 22 K kg/ha and 56 N 34 P 44 K kg/ha). Soil amendments were applied at the rate of 50 Mg/ha. The soil columns were leached with de-ionised water equivalent to 50 mm rainfall every 4 days. Concentrations of soil solution extracted by Rhizon samplers indicated that NH4 leaching was decreased 38-43 % by bentonite addition but little of the soil solution N was in NO3 form and bentonite had no effect on mobility of this form of N. The application of bentonite was able to hold NH4 in soil solution of top soil. Leaching of NH4 was delayed to 15 day after fertiliser application in bentonite-amended sand

    Hydraulic conductivity of a dense prehydrated geosynthetic clay liner

    Get PDF
    Dense prehydrated geosynthetic clay liners (DPH-GCLs) are a particular type of GCL which, unlike conventional GCLs manufactured with dry bentonite, contain bentonite prehydrated during manufacturing. DPH-GCLs are produced by a patented process that includes bentonite prehydration with a polymer solution and vacuum extrusion. This paper describes the results of permeability tests that were carried out using flexible-wall permeameters to investigate the hydraulic conductivity of a DPH GCL to water, natural seawater and a 12.5mmol/L CaCl2 solution. Moreover, the efficiency of the 0.1 m overlap seams between DPH-GCL panels has been investigated by means of a medium-scale permeameter able to accommodate specimens 0.305 m in diameter. Test results showed that the DPH GCL has very low hydraulic conductivity to water (1

    A study on the thermal conductivity of compacted bentonites

    Get PDF
    Thermal conductivity of compacted bentonite is one of the most important properties in the design of high-level radioactive waste repositories where this material is proposed for use as a buffer. In the work described here, a thermal probe based on the hot wire method was used to measure the thermal conductivity of compacted bentonite specimens. The experimental results were analyzed to observe the effects of various factors (i.e. dry density, water content, hysteresis, degree of saturation and volumetric fraction of soil constituents) on the thermal conductivity. A linear correlation was proposed to predict the thermal conductivity of compacted bentonite based on experimentally observed relationship between the volumetric fraction of air and the thermal conductivity. The relevance of this correlation was finally analyzed together with others existing methods using experimental data on several compacted bentonites

    Wet and dry effect on the hydraulic conductivity of polymer treated GCL prototype

    Get PDF
    Geosynthetic clay liners (GCLs) are widely used to isolate pollutants because of their low hydraulic conductivity to water. However, the performance of clay barriers may be impaired by prolonged exposure to electrolytic liquids which may lead to the compression of the diffuse double layer. The consequences are the increase of permeability and the loss of self-healing capacity. Moreover, the efficiency of the liners can further deteriorate by repeated wet and dry cycles, which may lead to desiccation of the bentonite and associated cracking. Modified bentonites have been introduced to improve the resistance of clay barriers to aggressive solutions. This study deals with a polymer-amended clay, HYPER clay. HYPER clay is treated with an anionic polymer and dehydrated and it shows enhanced performance in presence of electrolyte solutions. The effect of wet and dry cycles on the hydraulic conductivity to seawater of needle-punched GCLs prototypes of treated and untreated bentonite was investigated. The prototype samples containing HYPER clay 8% showed lower permeability compared to those containing untreated bentonite. However, the temperature suggested from the standard used in this study is extremely high and it does not represent the temperature in the field

    Time evolution of MX-80 bentonite geochemistry under thermo-hydraulic gradients

    Get PDF
    Indexación: Web of ScienceTwo 20-cm long columns of MX-80 bentonite compacted at a nominal dry density of 1.7 g/cm(3) with a water content of 17% were tested in thermo-hydraulic (TH) cells with the aim of simulating the conditions of a sealing material in a nuclear waste repository. On top of the columns a hydration surface simulated the host rock supplying groundwater and at the bottom a heater simulated the waste canister. The tests comprised two phases: a heating phase and a 'heating + hydration' phase. The temperatures at the ends of the columns were set during the last phase to 30 degrees C at the top and 140 degrees C at the bottom, respectively. The thermo-hydraulic treatment resulted in major changes along the bentonite columns. These changes led to significant gradients along the column with respect to the physical state (water content, dry density) and geochemistry of the bentonite. Smectite dissolution processes occurred. As a result, colloids were probably produced, particularly in the more hydrated areas. In the warmest part of the columns precipitation of carbonates took place, caused by their solubility decrease with temperature and the evaporation. The increase in water content reduced the ionic strength of the pore water in the more hydrated areas where species such as gypsum were dissolved. The solubilized ions were transported towards the bottom of the columns; Na+, Ca+, Mg2+ and SO42- moved at a similar rate and K+ and Cl- moved farther. These solubilized ions precipitated in the form of salts farther away along the columns as the test was longer. The TH treatment implied the loss of exchangeable positions in the smectite, particularly towards the heater. The cation exchange complex was also modified.http://www.ingentaconnect.com/content/minsoc/cm/2016/00000051/00000002/art0000

    Slurry infiltration tests for slurry shield tunnelling in saturated sand

    Get PDF
    Tunnelling in saturated sand will cause excess pore pressures in the sand. This was the case during the construction of all tunnels in the Netherlands. This excess pore pressure influences the stability of the tunnel face. Therefore the magnitude of the excess pore pressure is of importance. Furthermore, it requires more information on the penetration process of the bentonite slurry as it will occur at the front of the tunnel face. This paper deals with preliminary infiltration tests to investigate some aspects of the infiltration. Results will be compared with theory
    • …
    corecore