4 research outputs found

    Interactions entre les Cliques et les Stables dans un Graphe

    Get PDF
    This thesis is concerned with different types of interactions between cliques and stable sets, two very important objects in graph theory, as well as with the connections between these interactions. At first, we study the classical problem of graph coloring, which can be stated in terms of partioning the vertices of the graph into stable sets. We present a coloring result for graphs with no triangle and no induced cycle of even length at least six. Secondly, we study the Erdös-Hajnal property, which asserts that the maximum size of a clique or a stable set is polynomial (instead of logarithmic in random graphs). We prove that the property holds for graphs with no induced path on k vertices and its complement.Then, we study the Clique-Stable Set Separation, which is a less known problem. The question is about the order of magnitude of the number of cuts needed to separate all the cliques from all the stable sets. This notion was introduced by Yannakakis when he studied extended formulations of the stable set polytope in perfect graphs. He proved that a quasi-polynomial number of cuts is always enough, and he asked if a polynomial number of cuts could suffice. Göös has just given a negative answer, but the question is open for restricted classes of graphs, in particular for perfect graphs. We prove that a polynomial number of cuts is enough for random graphs, and in several hereditary classes. To this end, some tools developed in the study of the Erdös-Hajnal property appear to be very helpful. We also establish the equivalence between the Clique-Stable set Separation problem and two other statements: the generalized Alon-Saks-Seymour conjecture and the Stubborn Problem, a Constraint Satisfaction Problem.Cette thĂšse s'intĂ©resse Ă  diffĂ©rents types d'interactions entre les cliques et les stables, deux objets trĂšs importants en thĂ©orie des graphes, ainsi qu'aux relations entre ces diffĂ©rentes interactions. En premier lieu, nous nous intĂ©ressons au problĂšme classique de coloration de graphes, qui peut s'exprimer comme une partition des sommets du graphe en stables. Nous prĂ©sentons un rĂ©sultat de coloration pour les graphes sans triangles ni cycles pairs de longueur au moins 6. Dans un deuxiĂšme temps, nous prouvons la propriĂ©tĂ© d'Erdös-Hajnal, qui affirme que la taille maximale d'une clique ou d'un stable devient polynomiale (contre logarithmique dans les graphes alĂ©atoires) dans le cas des graphes sans chemin induit Ă  k sommets ni son complĂ©mentaire, quel que soit k.Enfin, un problĂšme moins connu est la Clique-Stable sĂ©paration, oĂč l'on cherche un ensemble de coupes permettant de sĂ©parer toute clique de tout stable. Cette notion a Ă©tĂ© introduite par Yannakakis lors de l’étude des formulations Ă©tendues du polytope des stables dans un graphe parfait. Il prouve qu’il existe toujours un sĂ©parateur Clique-Stable de taille quasi-polynomiale, et se demande si l'on peut se limiter Ă  une taille polynomiale. Göös a rĂ©cemment fourni une rĂ©ponse nĂ©gative, mais la question se pose encore pour des classes de graphes restreintes, en particulier pour les graphes parfaits. Nous prouvons une borne polynomiale pour la Clique-Stable sĂ©paration dans les graphes alĂ©atoires et dans plusieurs classes hĂ©rĂ©ditaires, en utilisant notamment des outils communs Ă  l'Ă©tude de la conjecture d'Erdös-Hajnal. Nous dĂ©crivons Ă©galement une Ă©quivalence entre la Clique-Stable sĂ©paration et deux autres problĂšmes  : la conjecture d'Alon-Saks-Seymour gĂ©nĂ©ralisĂ©e et le ProblĂšme TĂȘtu, un problĂšme de Satisfaction de Contraintes

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum
    corecore