10,533 research outputs found

    Three-coloring triangle-free graphs on surfaces V. Coloring planar graphs with distant anomalies

    Get PDF
    We settle a problem of Havel by showing that there exists an absolute constant d such that if G is a planar graph in which every two distinct triangles are at distance at least d, then G is 3-colorable. In fact, we prove a more general theorem. Let G be a planar graph, and let H be a set of connected subgraphs of G, each of bounded size, such that every two distinct members of H are at least a specified distance apart and all triangles of G are contained in \bigcup{H}. We give a sufficient condition for the existence of a 3-coloring phi of G such that for every B\in H, the restriction of phi to B is constrained in a specified way.Comment: 26 pages, no figures. Updated presentatio

    Conflict-Free Coloring of Intersection Graphs of Geometric Objects

    Full text link
    In FOCS'2002, Even et al. introduced and studied the notion of conflict-free colorings of geometrically defined hypergraphs. They motivated it by frequency assignment problems in cellular networks. This notion has been extensively studied since then. A conflict-free coloring of a graph is a coloring of its vertices such that the neighborhood (pointed or closed) of each vertex contains a vertex whose color differs from the colors of all other vertices in that neighborhood. In this paper we study conflict-colorings of intersection graphs of geometric objects. We show that any intersection graph of n pseudo-discs in the plane admits a conflict-free coloring with O(\log n) colors, with respect to both closed and pointed neighborhoods. We also show that the latter bound is asymptotically sharp. Using our methods, we also obtain a strengthening of the two main results of Even et al. which we believe is of independent interest. In particular, in view of the original motivation to study such colorings, this strengthening suggests further applications to frequency assignment in wireless networks. Finally, we present bounds on the number of colors needed for conflict-free colorings of other classes of intersection graphs, including intersection graphs of axis-parallel rectangles and of \rho-fat objects in the plane.Comment: 18 page
    • …
    corecore