54 research outputs found

    b-Bit Minwise Hashing

    Full text link
    This paper establishes the theoretical framework of b-bit minwise hashing. The original minwise hashing method has become a standard technique for estimating set similarity (e.g., resemblance) with applications in information retrieval, data management, social networks and computational advertising. By only storing the lowest bb bits of each (minwise) hashed value (e.g., b=1 or 2), one can gain substantial advantages in terms of computational efficiency and storage space. We prove the basic theoretical results and provide an unbiased estimator of the resemblance for any b. We demonstrate that, even in the least favorable scenario, using b=1 may reduce the storage space at least by a factor of 21.3 (or 10.7) compared to using b=64 (or b=32), if one is interested in resemblance > 0.5

    Hashing Algorithms for Large-Scale Learning

    Full text link
    In this paper, we first demonstrate that b-bit minwise hashing, whose estimators are positive definite kernels, can be naturally integrated with learning algorithms such as SVM and logistic regression. We adopt a simple scheme to transform the nonlinear (resemblance) kernel into linear (inner product) kernel; and hence large-scale problems can be solved extremely efficiently. Our method provides a simple effective solution to large-scale learning in massive and extremely high-dimensional datasets, especially when data do not fit in memory. We then compare b-bit minwise hashing with the Vowpal Wabbit (VW) algorithm (which is related the Count-Min (CM) sketch). Interestingly, VW has the same variances as random projections. Our theoretical and empirical comparisons illustrate that usually bb-bit minwise hashing is significantly more accurate (at the same storage) than VW (and random projections) in binary data. Furthermore, bb-bit minwise hashing can be combined with VW to achieve further improvements in terms of training speed, especially when bb is large

    Improved Densification of One Permutation Hashing

    Full text link
    The existing work on densification of one permutation hashing reduces the query processing cost of the (K,L)(K,L)-parameterized Locality Sensitive Hashing (LSH) algorithm with minwise hashing, from O(dKL)O(dKL) to merely O(d+KL)O(d + KL), where dd is the number of nonzeros of the data vector, KK is the number of hashes in each hash table, and LL is the number of hash tables. While that is a substantial improvement, our analysis reveals that the existing densification scheme is sub-optimal. In particular, there is no enough randomness in that procedure, which affects its accuracy on very sparse datasets. In this paper, we provide a new densification procedure which is provably better than the existing scheme. This improvement is more significant for very sparse datasets which are common over the web. The improved technique has the same cost of O(d+KL)O(d + KL) for query processing, thereby making it strictly preferable over the existing procedure. Experimental evaluations on public datasets, in the task of hashing based near neighbor search, support our theoretical findings

    FLASH: Randomized Algorithms Accelerated over CPU-GPU for Ultra-High Dimensional Similarity Search

    Full text link
    We present FLASH (\textbf{F}ast \textbf{L}SH \textbf{A}lgorithm for \textbf{S}imilarity search accelerated with \textbf{H}PC), a similarity search system for ultra-high dimensional datasets on a single machine, that does not require similarity computations and is tailored for high-performance computing platforms. By leveraging a LSH style randomized indexing procedure and combining it with several principled techniques, such as reservoir sampling, recent advances in one-pass minwise hashing, and count based estimations, we reduce the computational and parallelization costs of similarity search, while retaining sound theoretical guarantees. We evaluate FLASH on several real, high-dimensional datasets from different domains, including text, malicious URL, click-through prediction, social networks, etc. Our experiments shed new light on the difficulties associated with datasets having several million dimensions. Current state-of-the-art implementations either fail on the presented scale or are orders of magnitude slower than FLASH. FLASH is capable of computing an approximate k-NN graph, from scratch, over the full webspam dataset (1.3 billion nonzeros) in less than 10 seconds. Computing a full k-NN graph in less than 10 seconds on the webspam dataset, using brute-force (n2Dn^2D), will require at least 20 teraflops. We provide CPU and GPU implementations of FLASH for replicability of our results

    Coding for Random Projections

    Full text link
    The method of random projections has become very popular for large-scale applications in statistical learning, information retrieval, bio-informatics and other applications. Using a well-designed coding scheme for the projected data, which determines the number of bits needed for each projected value and how to allocate these bits, can significantly improve the effectiveness of the algorithm, in storage cost as well as computational speed. In this paper, we study a number of simple coding schemes, focusing on the task of similarity estimation and on an application to training linear classifiers. We demonstrate that uniform quantization outperforms the standard existing influential method (Datar et. al. 2004). Indeed, we argue that in many cases coding with just a small number of bits suffices. Furthermore, we also develop a non-uniform 2-bit coding scheme that generally performs well in practice, as confirmed by our experiments on training linear support vector machines (SVM)
    • …
    corecore