81 research outputs found

    Real-Time Structural Diagnosis and Damage Assessment of Buildings(II)

    No full text
    建築結構健康監測與損害診斷為結構整體安全檢測中兩不同範疇之研究,「健康監測」針對使用結構受持續性環境擾動(例如交通、風力)進行長時間持續性檢測;「損害診斷」主要是於極端災害事件後(如地震)進行快速安全評估。本計畫為三年度計畫(96.08.01-99.07.31)之第二年計畫,主要針對高層建築健康監測提出演算技術策略,並與香港理工大學合作,以全球最高塔式建築-廣州新電視塔之標竿建築測試平台進行驗證,期能成為本電視塔未來監測核心技術之一。本計畫主要分兩部分,第一部分為塔式建築模態參數之萃取;由於此類建築正常運作下受風力、地表微振、交通噪音振動、與內部人行活動等外力作用,外力無法準確量測,故本研究將採用一輸出型(Output-only)系統識別方法-隨機次空間識別(Stochastic SubspaceIdentification, SSI)技巧,根據結構輸出加速度反應求得系統模態參數。第二部份為結構健康診斷評估;此研究應用計畫主持人團隊過去建立之剪力結構損壞指標,延續第一年模式誤差影響之研究,提出一考慮彎矩影響之損壞指標,以作為塔式建築之健康診斷演算技術。本計畫將蒐集交通部中央氣象局之監測高層結構(如台北101 大樓、台北新光三越大樓、台電大樓等)之微震反應紀錄,進行結構系統SSI 輸出識別,並與地震反應之輸入輸出識別結果進行比較驗證,最後,應用廣州新電視塔於不同施工階段所量測之加速度紀錄,進行整個結構健康監測流程之測試,以驗證所發展診斷技術之可行性。Building health monitoring and damage diagnosis are two different scopes in structural globalsafety evaluation. The former is to monitor the health of a structure which is excited byenvironmental loadings, such as traffic and winds, in a long term manner, while the latter is torapidly evaluate the damage of a structure after extreme events, such as earthquakes. This project iscarrying out for the second year of a three-year project (96.08.01-99.07.31) and is to present astructural health monitoring procedure for high-rise buildings and towers. Meanwhile, in cooperationwith the Hong Kong Polytechnic University, the proposed procedure will be verified using themeasurements from a full-scale benchmark flexible structure - Guangzhou New TV Tower.Hopefully, the developed procedure would be selected as one of the algorithms to be implemented onthis structure. This project includes two parts. The first part deals with the extraction of the modalparameters of a tower-type structure whose response is excited by winds, ground vibrations, trafficvibrations and noises, and human activities, etc., which can not be accurately measured. Therefore,this study applies an output-only technique, called stochastic subspace identification (SSI), based onbuilding output measurements. The second part is to study the health condition diagnosis. On thebasis of damage index for shear-type buildings developed by the research team leading by thePrincipal Investigator, this study extends the results about the model error effect in the first-yearproject. Then, a damage index for moment-resistant-type structures is developed and applied tohigh-rise buildings and towers.The proposed procedure will be verified by the ambient vibration measurements from theinstrumented high-rise buildings (such as Taipei 101 building, Taipei Shinkuang building, andTaiwan Electricity Company Headquarter building by the Central Weather Bureau (CWB)). Finally,the procedure is demonstrated using the acceleration measurements from Guangzhou New TV Towerat different construction stages to show its applicability in structural health monitoring

    Vibration Control Performance of Semi-Active Friction Typed MTMD against Earthquakes

    No full text
    調諧質量阻尼器(Tuned Mass Damper, TMD)係為一具有特定頻率與阻尼之單自由度質塊。利用調頻共振之原理,可將結構物所承受之部份振動能量轉移至TMD,並由其阻尼耗散消除,藉此達到降低主結構動態反應之目的。線性TMD 之最佳化理論發展已臻成熟,但是非線性TMD之研究仍在發展階段。在結構減震控制技術中,藉由摩擦原理消散地震能量,已證實可大幅提升結構物之抗震能力,而摩擦型TMD 即屬於非線性TMD 的一種。由於摩擦行為普遍存在於具接觸面之相對運動中,摩擦型TMD 利用摩擦消能,故無須額外加裝黏滯型阻尼器。另外,單一TMD 的效用會因離頻而大打折扣,而利用多個TMD 組成多元調諧阻尼器 (Multiple TMD, MTMD)系統,則可增進單一TMD 之效能。因此,本計畫擬針對摩擦型MTMD 減震技術,探討被動摩擦型MTMD (PassiveFriction MTMD, PF-MTMD)之減震效能與其侷限性,並提出半主動摩擦型MTMD (Semi-active Friction MTMD, SAF-MTMD) 技術以改善PF-MTMD 的缺點。本案所建議之SAF-MTMD 是由質塊與半主動摩擦機構 (Semi-active Friction Device, SAFD)所組成,配合本案所建議之三種控制律,可避免摩擦型MTMD 因黏著而失去調頻與消能作用的缺點,提升減震效能。The design and application of the traditional (linear typed) tuned massdamper (TMD) systems are well developed, but nonlinear typed TMDsystems are still developing. It is known that energy dissipation technologyusing friction mechanisms is an effective means for vibration mitigation ofseismic structures. A friction typed TMD, which is one kinds of nonlinearTMD. The energy is dissipated by friction mechanism; there is no need toinstall an extra damping device. On the other hand, structures with multipleTMDs (MTMD) have been proposed to eliminate the disadvantages of singleTMD systems. It has been proven that the MTMD systems are more robustthan those of single TMD systems. However, for a passive friction typedMTMD (PF-MTMD), the slip force of each TMD is a pre-determined fixedvalue. The tuning and energy dissipating ability of the PF-MTMD willdecrease when one or more TMDs are in its stick state. In order to overcomethis problem, structures equipped with semi-active friction typed MTMD(SAF-MTMD) subjected to different earthquake excitations are investigated.Three control laws will be conducted in this project. The performance of thePF-MTMD and SAF-MTMD for protection of seismic structures will beinvestigated numerically

    Automatic Damage Localization for Buildings Based on Incomplete Measurements (Ii)-(Iii)

    No full text
    在量測感應器輕巧化、資料擷取高速化與傳輸無線化的進展帶動下,土木建築裝設結構健康監測(Structural Health Monitoring, SHM)系統以進行即時損害診斷、防止災難無預警地發生,已逐漸成為國內外廣泛研究的課題。由於感應器數量有限,一般建築物均無法於所有自由度進行量測,本三年度計畫(99.08.01-102.07.31)主要目的,即針對建築結構,發展依有限量測訊號之可靠、有效、且實務可行之SHM 系統即時損壞診斷與評估技術。此技術首先以有限量測系統識別方法求得結構模態參數、再應用發展之損壞指標進行結構健康與損壞診斷。本研究第一年(執行中)首先針對多層樓剪力結構,建立依有限量測之系統即時損壞監測與震後診斷技術,探討其適用性與可靠度,除了與全量測識別法作比較外,並將針對此法進行敏感度分析,以定義其適用範圍;由於一般建築結構皆有程度不一之偏心問題,本計畫第二年(100.08.01-101.07.31)擬延伸第一年之研究成果,針對扭轉耦合結構,發展依有限量測之最佳振態還原法,以建立依有限量測之系統即時損壞監測與震後診斷技術,並探討偏心程度對於此技術之影響。第三年(101.08.01-102.07.31)則將前兩年之研究成果整合,製作應用軟體,除利用國家地震工程研究中心所進行一連串之標竿結構試驗進行驗證,並以國立中興大學土木環工大樓於1999 集集地震主震期間、與台東消防大樓於2006 年台東卑南地震主震期間之地震紀錄為對象,進行所研發演算軟體之驗證。In recent, the installation of structural health monitoring (SHM) system to preventcivil structures from failure without warning has become an interesting and attractiveresearch topics because of the rapid development of sensing and measurementtechnologies. In structural engineering, it is not practical and not possible to haveresponses at all degrees-of freedom measured. In real applications, only an incompleteset of recorded time histories are available and this impairs the applicability of the SHMmethods. The objective of this three-year (8/1/2010-7/31/2013) project is primarily todevelop a reliable, efficient, and applicable damage diagnosis procedure based onincomplete measurements for an SHM system. In the first year (8/1/2010-7/31/2011),an automatic damage localization technique for shear buildings through incompletemeasurements is developed. The sensitivity of the technique due to the structuralmodel uncertainty, the identification error, and partial measurement, etc., isinvestigated to define its applicable scope. In the second year (8/1/2011-7/31/2012),this technique extends the identified structures from plane shear buildings totorsionally-coupled buildings to examine the translation-torsion coupling effect. In thethird year (8/1/2012-7/31/2013), this damage diagnosis procedure will bedemonstrated through the measured vibration data of real buildings whichexperienced moderate and severe damages in past earthquakes to verify its accuracyand reliability

    離散時間結構系統之H∞直接輸出回饋控制

    No full text
    經由許多的理論模擬及試驗研究證實主動控制確實能降低結構動態反應,然而在主動結構控制實際應用時,量測與施力等整體控制系統的離散特性將會使控制力施行遭遇困難,因此本計劃將應用考慮外力擾動且具強健性之∞ H 控制法則,發展離散時間系統之控制理論,並探討離散時間系統滿足最小性能指標-熵數( ∞ H 直接輸出回饋控制理論性能指標)之∞ H 直接輸出回饋控制理論應用於扭轉耦合建築結構受地震作用之減振。本計劃將理論推演求出具控制力施加時間延遲,離散時間系統滿足最小熵數之直接輸出回饋增益值,同時,探討控制器與量測數目及位址對控制效果的影響。由於直接輸出回饋控制係由線外計算常數回饋增益值,當實際應用時,只需將此增益值乘以輸出量測,即可得知需施加的控制力大小。另一方面,探討克服控制力施加時間延遲效應,期望時間延遲效應降至最低,確保控制系統穩定,且可達到預期減振目標,使得結構主動控制之實際應用更為可行

    Real-Time Structural Diagnosis and Damage Assessment of Buildings (I)

    No full text
    在量測感應器輕巧化、資料擷取高速化與傳輸無線化的進展帶動下,土木建築裝設結構健康監測(Structural Health Monitoring, SHM)系統以進行即時損害診斷、防止災難無預警地發生,已逐漸成為國內外廣泛研究的課題。SHM 系統的良窳與否,除有賴於完善的硬體設備與有效率的感應器佈設外,正確與快速的損壞診斷演算技巧,亦為整體系統成敗的關鍵,本三年度計畫(96.08.01-99.07.31)主要目的,即針對建築結構,發展可靠、有效、且實務可行之SHM系統即時損壞診斷與評估技術。本研究首先以剛構架(Frame)建築結構模式為對象,回顧目前以結構損壞前後識別動態參數為基礎之震後損壞診斷指標,探討理論模式誤差、系統識別誤差、不足量測等引致之損壞指標敏感度,以定義其適用範圍,並瞭解其實務應用上之優缺點與可靠度;接著配合上述震後診斷技術,考慮結構非線性行為,發展損壞即時偵測方法,以作為結構健康監測系統於損壞後進行損壞診斷指標計算之啟動依據。本計畫亦將以過去實際發生震損之建築結構為對象,以量測得到之結構實際地震紀錄進行軟體測試,並與實際損壞勘查結果比較,以驗證所發展SHM 損壞診斷技術之可行性

    Automatic Damage Localization for Buildings Based on Incomplete Measurements (Iii)

    No full text
    在量測感應器輕巧化、資料擷取高速化與傳輸無線化的進展帶動下,土木建築裝設結構健康監測(Structural Health Monitoring, SHM)系統以進行即時損害診斷、防止災難無預警地發生,已逐漸成為國內外廣泛研究的課題。由於建築結構具龐大自由度數目且感應器數量有限,一般建築物均無法於所有自由度進行量測。本三年度計畫(99.08.01-102.07.31)主要目的,即針對建築結構,發展依有限量測訊號之可靠、有效、且實務可行之SHM 系統,以快速診斷建築結構之損壞位置及損壞程度。此技術首先應用依有限量測之系統識別技巧求得結構模態參數、再應用自我發展之損壞指標進行結構健康診斷與損壞判別。第一年本研究將針對多層樓平面剪力建築結構,發展依有限量測之系統即時監測與震後損壞診斷技術,除了與完全量測識別結果比較外,並將針對此法進行敏感度分析,以探討其適用性與可靠度;第二年擬針對不規則的扭轉耦合建築結構,發展依有限量測之即時結構健康監測與損壞診斷技術,以進一步判別樓層平面損壞位址及探討偏心程度對此診斷技術精確度之影響;第三年將整合前兩年之研究成果,發展應用軟體,除利用國家地震工程研究中心所進行一連串之標竿結構試驗資料進行驗證外,並應用國立中興大學土木環工大樓於1999 集集地震以及台東消防局大樓於2006 年台東卑南地震之地震紀錄和損壞現場調查資料,驗證所研發演算軟體之精確度與實用性。In recent, the installation of structural health monitoring (SHM) systems to preventbuilding structures from failure without warning has become an interesting and attractiveresearch topic worldwide because of the rapid development of sensing, data acquisitionand transmission technologies. For a general building structure, it possesses a largenumber of degrees of freedom and it is not possible and practical to have measurements atall degrees of freedom due to limited numbers of sensors. In real applications, onlyincomplete sets of recorded time histories of building and ground responses are availableand this impairs the applicability of the SHM techniques. The objective of this three-year(8/1/2010 - 7/31/2013) project is primarily to develop a reliable, efficient, and applicabledamage diagnosis technique for an SHM system from incomplete measurements of abuilding. First of all, an automatic damage localization technique is developed based onthe identified modal parameters before and after an earthquake and the developed damageindices. In the first year, the sensitivity of the technique due to structural modeluncertainty, system identification error, and partial measurement for planar shearbuildings is investigated to examine its applicability and reliability. Then, in the secondyear, this technique will be extended to diagnose irregular, torsionally-coupled buildings.Finally, this damage diagnosis technique will be demonstrated through the measured datafrom two real buildings which experienced damages in 1999 Chi-Chi earthquake and2006 Taitung Be-Nan Earthquake, respectively, to verify its accuracy and reliability

    校友會動態:土木系系友會現況報導

    No full text

    Active Control of Horizontal Vibration of High-Speed Elevators

    No full text
    隨著超高層建築的發展,為了減少等待電梯及搭乘電梯時間,電梯運行速度快速提升,所伴隨之水平振動愈來愈顯著,將影響乘坐之舒適性甚至車體結構之安全性,同時也會降低電梯的使用壽命。造成電梯水平振動主因為電梯運行過程中導軌的變形、導軌工作面粗糙度、導軌組裝誤差造成的不平整及運行過程中產生之空氣湍流。本計畫目的為改善搭乘電梯之舒適感,增進電梯安全,擬發展降低電梯車廂體水平振動加速度之主動控制策略,應用主動質塊驅動系統(active mass driver, AMD)以降低車廂體之水平振動,首先建立電梯系統多自由度動態模式,探討造成水平振動之外力特性,分析電梯車廂體振動反應,同時應用具強健性之H∞ 控制理論計算最佳施加控制力,最後並進行數值模擬驗證,確保AMD 之控制效用。The more the development of super high-rise buildings, the faster thespeed of elevator in order to shorten elevator waiting and riding time. Thehorizontal vibration becomes more significant with the increase of theelevator speed and will decrease the serviceability and the comfort ofpassenger and the safety of elevator. The horizontal vibration is generated bythe excitation of the elevator car due to the roughness and the winding of theguide rails and the turbulent flow induced by the high-speed movement ofthe elevator. The purpose of this project is to develop an active mass driver(AMD) control system to reduce the horizontal vibration during the operationof elevator. First, a 4 degree-of-freedom (DOF) dynamic model of elevatorwill be established to examine the characteristics of the excitations andanalyze the dynamic responses of elevator. An robust H∞ control strategy isapplied to calculate the optimal control force. Finally, numerical verificationsare conducted to assure the control effectiveness of the proposed active massdriver control system
    corecore