382 research outputs found

    Human germline gene editing: Recommendations of ESHG and ESHRE

    Get PDF
    Technological developments in gene editing raise high expectations for clinical applications, first of all for somatic gene editing but in theory also for germline gene editing (GLGE). GLGE is currently not allowed in many countries. This makes clinical applications in these countries impossible now, even if GLGE would become safe and effective. What were the arguments behind this legislation, and are they still convincing? If a technique can help to avoid serious genetic disorders, in a safe and effective way, would this be a reason to reconsider earlier standpoints? The European Society of Human Reproduction and Embryology (ESHRE) and the European Society of Human Genetics (ESHG) together developed a Background document and Recommendations to inform and stimulate ongoing societal debates. After consulting its membership and experts, this final version of the Recommendations was endorsed by the Executive Committee and the Board of the respective Societies in May 2017. Taking account of ethical arguments, we argue that both basic and pre-clinical research regarding GLGE can be justified, with conditions. Furthermore, while clinical GLGE would be totally premature, it might become a responsible intervention in the future, but only after adequate pre-clinical research. Safety of the child and future generations is a major concern. Future discussions must also address priorities among reproductive and potential non-reproductive alternatives, such as PGD and somatic editing, if that would be safe and successful. The prohibition of human germline modification, however, needs renewed discussion among relevant stakeholders, including the general public and legislators

    Responsible innovation in human germline gene editing: Background document to the recommendations of ESHG and ESHRE

    Get PDF
    Technological developments in gene editing raise high expectations for clinical applications, including editing of the germline. The European Society of Human Reproduction and Embryology (ESHRE) and the European Society of Human Genetics (ESHG) together developed a Background document and Recommendations to inform and stimulate ongoing societal debates. This document provides the background to the Recommendations. Germline gene editing is currently not allowed in many countries. This makes clinical applications in these countries impossible now, even if germline gene editing would become safe and effective. What were the arguments behind this legislation, and are they still convincing? If a technique could help to avoid serious genetic disorders, in a safe and effective way, would this be a reason to reconsider earlier standpoints? This Background document summarizes the scientific developments and expectations regarding germline gene editing, legal regulations at the European level, and ethics for three different settings (basic research, preclinical research and clinical applications). In ethical terms, we argue that the deontological objections (e.g., gene editing goes against nature) do not seem convincing while consequentialist objections (e.g., safety for the children thus conceived and following generations) require research, not all of which is allowed in the current legal situation in European countries. Development of this Background document and Recommendations reflects the responsibility to help society understand and debate the full range of possible implications of the new technologies, and to contribute to regulations that are adapted to the dynamics of the field while taking account of ethical considerations and societal concerns

    Responsible implementation of expanded carrier screening.

    Get PDF
    This document of the European Society of Human Genetics contains recommendations regarding responsible implementation of expanded carrier screening. Carrier screening is defined here as the detection of carrier status of recessive diseases in couples or persons who do not have an a priori increased risk of being a carrier based on their or their partners' personal or family history. Expanded carrier screening offers carrier screening for multiple autosomal and X-linked recessive disorders, facilitated by new genetic testing technologies, and allows testing of individuals regardless of ancestry or geographic origin. Carrier screening aims to identify couples who have an increased risk of having an affected child in order to facilitate informed reproductive decision making. In previous decades, carrier screening was typically performed for one or few relatively common recessive disorders associated with significant morbidity, reduced life-expectancy and often because of a considerable higher carrier frequency in a specific population for certain diseases. New genetic testing technologies enable the expansion of screening to multiple conditions, genes or sequence variants. Expanded carrier screening panels that have been introduced to date have been advertised and offered to health care professionals and the public on a commercial basis. This document discusses the challenges that expanded carrier screening might pose in the context of the lessons learnt from decades of population-based carrier screening and in the context of existing screening criteria. It aims to contribute to the public and professional discussion and to arrive at better clinical and laboratory practice guidelines.European Journal of Human Genetics advance online publication, 16 March 2016; doi:10.1038/ejhg.2015.271

    European recommendations integrating genetic testing into multidisciplinary management of sudden cardiac death.

    Get PDF
    Sudden cardiac death (SCD) accounts for 10-20% of total mortality, i.e., one in five individuals will eventually die suddenly. Given the substantial genetic component of SCD in younger cases, postmortem genetic testing may be particularly useful in elucidating etiological factors in the cause of death in this subset. The identification of genes responsible for inherited cardiac diseases have led to the organization of cardiogenetic consultations in many countries worldwide. Expert recommendations are available, emphasizing the importance of genetic testing and appropriate information provision of affected individuals, as well as their relatives. However, the context of postmortem genetic testing raises some particular ethical, legal, and practical (including economic or financial) challenges. The Public and Professional Policy Committee of the European Society of Human Genetics (ESHG), together with international experts, developed recommendations on management of SCD after a workshop sponsored by the Brocher Foundation and ESHG in November 2016. These recommendations have been endorsed by the ESHG Board, the European Council of Legal Medicine, the European Society of Cardiology working group on myocardial and pericardial diseases, the ERN GUARD-HEART, and the Association for European Cardiovascular Pathology. They emphasize the importance of increasing the proportion of both medical and medicolegal autopsies and educating the professionals. Multidisciplinary collaboration is of utmost importance. Public funding should be allocated to reach these goals and allow public health evaluation

    The changing landscape of genetic testing and its impact on clinical and laboratory services and research in Europe

    Get PDF
    The arrival of new genetic technologies that allow efficient examination of the whole human genome (microarray, next-generation sequencing) will impact upon both laboratories (cytogenetic and molecular genetics in the first instance) and clinical/medical genetic services. The interpretation of analytical results in terms of their clinical relevance and the predicted health status poses a challenge to both laboratory and clinical geneticists, due to the wealth and complexity of the information obtained. There is a need to discuss how to best restructure the genetic services logistically and to determine the clinical utility of genetic testing so that patients can receive appropriate advice and genetic testing. To weigh up the questions and challenges of the new genetic technologies, the European Society of Human Genetics (ESHG) held a series of workshops on 10 June 2010 in Gothenburg. This was part of an ESHG satellite symposium on the 'Changing landscape of genetic testing', co-organized by the ESHG Genetic Services Quality and Public and Professional Policy Committees. The audience consisted of a mix of geneticists, ethicists, social scientists and lawyers. In this paper, we summarize the discussions during the workshops and present some of the identified ways forward to improve and adapt the genetic services so that patients receive accurate and relevant information. This paper covers ethics, clinical utility, primary care, genetic services and the blurring boundaries between healthcare and research

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC