12,967 research outputs found

    Asymptotics for sliced average variance estimation

    Full text link
    In this paper, we systematically study the consistency of sliced average variance estimation (SAVE). The findings reveal that when the response is continuous, the asymptotic behavior of SAVE is rather different from that of sliced inverse regression (SIR). SIR can achieve n\sqrt{n} consistency even when each slice contains only two data points. However, SAVE cannot be n\sqrt{n} consistent and it even turns out to be not consistent when each slice contains a fixed number of data points that do not depend on n, where n is the sample size. These results theoretically confirm the notion that SAVE is more sensitive to the number of slices than SIR. Taking this into account, a bias correction is recommended in order to allow SAVE to be n\sqrt{n} consistent. In contrast, when the response is discrete and takes finite values, n\sqrt{n} consistency can be achieved. Therefore, an approximation through discretization, which is commonly used in practice, is studied. A simulation study is carried out for the purposes of illustration.Comment: Published at http://dx.doi.org/10.1214/009053606000001091 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Single soft gluon emission at two loops

    Full text link
    We study the single soft-gluon current at two loops with two energetic partons in massless perturbative QCD, which describes, for example, the soft limit of the two-loop amplitude for ggHggg\to Hg. The results are presented as Laurent expansions in ϵ\epsilon in D=42ϵD=4-2\epsilon spacetime dimension. We calculate the expansion to order ϵ2\epsilon^2 analytically, which is a necessary ingredient for Higgs production at hadron colliders at next-to-next-to-next-to-leading order in the soft-virtual approximation. We also give two-loop results of the single soft-gluon current in N=4{\cal N}=4 Super-Yang-Mills theory, and find that it has uniform transcendentality. By iteration relation of splitting amplitudes, our calculations can determine the three-loop single soft-gluon current to order ϵ0\epsilon^0 in N=4{\cal N}=4 Super-Yang-Mills theory in the limit of large NcN_c.Comment: typos corrected; journal versio

    Nonparametric checks for single-index models

    Get PDF
    In this paper we study goodness-of-fit testing of single-index models. The large sample behavior of certain score-type test statistics is investigated. As a by-product, we obtain asymptotically distribution-free maximin tests for a large class of local alternatives. Furthermore, characteristic function based goodness-of-fit tests are proposed which are omnibus and able to detect peak alternatives. Simulation results indicate that the approximation through the limit distribution is acceptable already for moderate sample sizes. Applications to two real data sets are illustrated.Comment: Published at http://dx.doi.org/10.1214/009053605000000020 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Efficient estimation of moments in linear mixed models

    Full text link
    In the linear random effects model, when distributional assumptions such as normality of the error variables cannot be justified, moments may serve as alternatives to describe relevant distributions in neighborhoods of their means. Generally, estimators may be obtained as solutions of estimating equations. It turns out that there may be several equations, each of them leading to consistent estimators, in which case finding the efficient estimator becomes a crucial problem. In this paper, we systematically study estimation of moments of the errors and random effects in linear mixed models.Comment: Published in at http://dx.doi.org/10.3150/10-BEJ330 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Top-Quark Decay at Next-to-Next-to-Leading Order in QCD

    Full text link
    We present the complete calculation of the top-quark decay width at next-to-next-to-leading order in QCD, including next-to-leading electroweak corrections as well as finite bottom quark mass and WW boson width effects. In particular, we also show the first results of the fully differential decay rates for top-quark semileptonic decay tW+(l+ν)bt\to W^+(l^+\nu)b at next-to-next-to-leading order in QCD. Our method is based on the understanding of the invariant mass distribution of the final-state jet in the singular limit from effective field theory. Our result can be used to study arbitrary infrared-safe observables of top-quark decay with the highest perturbative accuracy.Comment: 5 pages, 6 figures; version accepted for publication in Physical Review Letter

    Resummation prediction on top quark transverse momentum distribution at large pT

    Full text link
    We study the factorization and resummation of t-channel top quark transverse momentum distribution at large pT in the SM at both the Tevatron and the LHC with soft-collinear effective theory. The cross section in the threshold region can be factorized into a convolution of hard, jet and soft functions. In particular, we first calculate the NLO soft functions for this process, and give a RG improved cross section by evolving the different functions to a common scale. Our results show that the resummation effects increase the NLO results by about 9%-13% and 4%-9% when the top quark pT is larger than 50 and 70 GeV at the Tevatron and the 8 TeV LHC, respectively. Also, we discuss the scale independence of the cross section analytically, and show how to choose the proper scales at which the perturbative expansion can converge fast.Comment: 32 pages, 10 figures, version published in Phys.Rev.

    Indirect unitarity violation entangled with matter effects in reactor antineutrino oscillations

    Full text link
    If finite but tiny masses of the three active neutrinos are generated via the canonical seesaw mechanism with three heavy sterile neutrinos, the 3\times 3 Pontecorvo-Maki-Nakagawa-Sakata neutrino mixing matrix V will not be exactly unitary. This kind of indirect unitarity violation can be probed in a precision reactor antineutrino oscillation experiment, but it may be entangled with terrestrial matter effects as both of them are very small. We calculate the probability of \overline{\nu}_e \to \overline{\nu}_e oscillations in a good analytical approximation, and find that, besides the zero-distance effect, the effect of unitarity violation is always smaller than matter effects, and their entanglement does not appear until the next-to-leading-order oscillating terms are taken into account. Given a 20-kiloton JUNO-like liquid scintillator detector, we reaffirm that terrestrial matter effects should not be neglected but indirect unitarity violation makes no difference, and demonstrate that the experimental sensitivities to the neutrino mass ordering and a precision measurement of \theta_{12} and \Delta_{21} \equiv m^2_2 - m^2_1 are robust.Comment: 21 pages, 6 figures, version to be published in PLB, more discussions adde
    corecore