200 research outputs found

    Simulation of immiscible water-alternating-CO2 flooding in the Liuhua Oilfield Offshore Guangdong, China

    Get PDF
    In this paper, the immiscible water-alternating-CO2 flooding process at the LH11-1 oilfield, offshore Guangdong Province, was firstly evaluated using full-field reservoir simulation models. Based on a 3D geological model and oil production history, 16 scenarios of water-alternating-CO2 injection operations with different water alternating gas (WAG) ratios and slug sizes, as well as continuous CO2 injection (Con-CO2) and primary depletion production (No-CO2) scenarios, have been simulated spanning 20 years. The results represent a significant improvement in oil recovery by CO2 WAG over both Con-CO2 and No-CO2 scenarios. The WAG ratio and slug size of water affect the efficiency of oil recovery and CO2 injection. The optimum operations are those with WAG ratios lower than 1:2, which have the higher ultimate oil recovery factor of 24%. Although WAG reduced the CO2 injection volume, the CO2 storage efficiency is still high, more than 84% of the injected CO2 was sequestered in the reservoir. Results indicate that the immiscible water-alternating-CO2 processes can be optimized to improve significantly the performance of pressure maintenance and oil recovery in offshore reef heavy-oil reservoirs significantly. The simulation results suggest that the LH11-1 field is a good candidate site for immiscible CO2 enhanced oil recovery and storage for the Guangdong carbon capture, utilization and storage (GDCCUS) project

    Continental Interior and Edge Breakup at Convergent Margins Induced by Subduction Direction Reversal: A Numerical Modeling Study Applied to the South China Sea Margin

    Get PDF
    The dynamics of continental breakup at convergent margins has been described as the results of backarc opening caused by slab rollback or drag force induced by subduction direction reversal. Although the rollback hypothesis has been intensively studied, our understanding of the consequence of subduction direction reversal remains limited. Using thermo‐mechanical modeling based on constraints from the South China Sea (SCS) region, we investigate how subduction direction reversal controls the breakup of convergent margins. The numerical results show that two distinct breakup modes, namely, continental interior and edge breakup (“edge” refers to continent above the plate boundary interface), may develop depending on the “maturity” of the convergent margin and the age of the oceanic lithosphere. For a slab age of ~15 to ~45 Ma, increasing the duration of subduction promotes the continental interior breakup mode, where a large block of the continental material is separated from the overriding plate. In contrast, the continental edge breakup mode develops when the subduction is a short‐duration event, and in this mode, a wide zone of less continuous continental fragments and tearing of the subducted slab occur. These two modes are consistent with the interior (relic late Mesozoic arc) and edge (relic forearc) rifting characteristics in the western and eastern SCS margin, suggesting that variation in the northwest‐directed subduction duration of the Proto‐SCS might be a reason for the differential breakup locus along the strike of the SCS margin. Besides, a two‐segment trench associated with the northwest‐directed subduction is implied in the present‐day SCS region

    Correlation between intercalated magnetic layers and superconductivity in pressurized EuFe2(As0.81P0.19)2

    Full text link
    We report comprehensive high pressure studies on correlation between intercalated magnetic layers and superconductivity in EuFe2(As0.81P0.19)2 single crystal through in-situ high pressure resistance, specific heat, X-ray diffraction and X-ray absorption measurements. We find that an unconfirmed magnetic order of the intercalated layers coexists with superconductivity in a narrow pressure range 0-0.5GPa, and then it converts to a ferromagnetic (FM) order at pressure above 0.5 GPa, where its superconductivity is absent. The obtained temperature-pressure phase diagram clearly demonstrates that the unconfirmed magnetic order can emerge from the superconducting state. In stark contrast, the superconductivity cannot develop from the FM state that is evolved from the unconfirmed magnetic state. High pressure X-ray absorption (XAS) measurements reveal that the pressure-induced enhancement of Eu's mean valence plays an important role in suppressing the superconductivity and tuning the transition from the unconfirmed magnetic state to a FM state. The unusual interplay among valence state of Eu ions, magnetism and superconductivity under pressure may shed new light on understanding the role of the intercalated magnetic layers in Fe-based superconductors
    • 

    corecore