29,187 research outputs found

    Amorphous 1-D nanowires of calcium phosphate/pyrophosphate : A demonstration of oriented self-growth of amorphous minerals

    Get PDF
    Amorphous inorganic solids are traditionally isotropic, thus, it is believed that they only grow in a non-preferential way without the assistance of regulators, leading to the morphologies of nanospheres or irregular aggregates of nanoparticles. However, in the presence of (ortho)phosphate (Pi) and pyrophosphate ions (PPi) which have synergistic roles in biomineralization, the highly elongated amorphous nanowires (denoted ACPPNs) form in a regulator-free aqueous solution (without templates, additives, organics, etc). Based on thorough characterization and tracking of the formation process (e.g., Cryo-TEM, spherical aberration correction high resolution TEM, solid state NMR, high energy resolution monochromated STEM-EELS), the microstructure and its preferential growth behavior are elucidated. In ACPPNs, amorphous calcium orthophosphate and amorphous calcium pyrophosphate are distributed at separated but close sites. The ACPPNs grow via either the preferential attachment of ∌2 nm nanoclusters in a 1-dimension way, or the transformation of bigger nanoparticles, indicating an inherent driving force-governed process. We propose that the anisotropy of ACPPNs microstructure, which is corroborated experimentally, causes their oriented growth. This study proves that, unlike the conventional view, amorphous minerals can form via oriented growth without external regulation, demonstrating a novel insight into the structures and growth behaviors of amorphous minerals

    Soy protein isolate-sodium alginate colloidal particles for improving the stability of high internal phase Pickering emulsions: Effects of mass ratios

    No full text
    The potential of sodium alginate (SA) at different mass ratios to improve the emulsifying ability of soy protein isolate (SPI) in high internal phase Pickering emulsions (HIPPEs) was evaluated in this work. SPI-SA particles were used as a natural particle stabilizer of HIPPEs with 80 % oil phase. The properties of particles with varying SPI to SA ratios (10:0, 10:1, 10:3, 10:5, 10:10, and 10:15 w/w) were evaluated. HIPPEs with a 10:10 SPI to SA ratio exhibited the smallest droplet sizes. Both the storage modulus and loss modulus of the HIPPEs increased with increasing SA addition ratios, implying that HIPPEs with higher SA addition have stronger gel characteristics. In addition, super-resolution microscopy and cryogenic scanning electron microscopy indicated that SA addition strengthened the compactness of the interface film and increased the distribution uniformity of HIPPEs. In conclusion, the combination of SPI and SA is beneficial for improving the performance of HIPPEs

    CEPC Technical Design Report -- Accelerator

    No full text
    International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s

    Recent advances in the extraction, purification, structural-property correlations, and antiobesity mechanism of traditional Chinese medicine-derived polysaccharides: a review

    Get PDF
    Traditional Chinese medicine (TCM) has displayed preventive and therapeutic effects on many complex diseases. As natural biological macromolecules, TCM-derived antiobesogenic polysaccharides (TCMPOs) exhibit notable weight-loss effects and are seen to be a viable tactic in the fight against obesity. Current studies demonstrate that the antiobesity activity of TCMPOs is closely related to their structural characteristics, which could be affected by the extraction and purification methods. Therefore, the extraction, purification and structural-property correlations of TCMPOs were discussed. Investigation of the antiobesity mechanism of TCMPOs is also essential for their improved application. Herein, the possible antiobesity mechanisms of TCMPOs are systematically summarized: (1) modulation of appetite and satiety effects, (2) suppression of fat absorption and synthesis, (3) alteration of the gut microbiota and their metabolites, and (4) protection of intestinal barriers. This collated information could provide some insights and offer a new therapeutic approach for the management and prevention of obesity

    Image_1_Simultaneous detection of human norovirus GI, GII and SARS-CoV-2 by a quantitative one-step triplex RT-qPCR.JPEG

    No full text
    BackgroundThere are many similarities in the clinical manifestations of human norovirus and SARS-CoV-2 infections, and nucleic acid detection is the gold standard for diagnosing both diseases. In order to expedite the identification of norovirus and SARS-CoV-2, a quantitative one-step triplex reverse transcription PCR (RT-qPCR) method was designed in this paper.MethodsA one-step triplex RT-qPCR assay was developed for simultaneous detection and differentiation of human norovirus GI (NoV-GI), GII (NoV-GII) and SARS-CoV-2 from fecal specimens.ResultsThe triplex RT-qPCR assay had high detection reproducibility (CV ConclusionThe triplex RT-qPCR assay for simultaneous detection of NoV-GI, NoV-GII and SARS-CoV-2 from fecal specimens has high clinical application value.</p

    Investigating the nature of the K0∗(700)^*_0(700) state with π±\pi^\pmKS0^0_{\rm S} correlations at the LHC

    No full text
    International audienceThe first measurements of femtoscopic correlations with the particle pair combinations π±\pi^\pmKS0^0_{\rm S} in pp collisions at s=13\sqrt{s}=13 TeV at the Large Hadron Collider (LHC) are reported by the ALICE experiment. Using the femtoscopic approach, it is shown that it is possible to study the elusive K0∗(700)^*_0(700) particle that has been considered a tetraquark candidate for over forty years. Boson source parameters and final-state interaction parameters are extracted by fitting a model assuming a Gaussian source to the experimentally measured two-particle correlation functions. The final-state interaction is modeled through a resonant scattering amplitude, defined in terms of a mass and a coupling parameter, decaying into a π±\pi^\pmKS0^0_{\rm S} pair. The extracted mass and Breit-Wigner width, derived from the coupling parameter, of the final-state interaction are found to be consistent with previous measurements of the K0∗(700)^*_0(700). The small value and increasing behavior of the correlation strength with increasing source size support the hypothesis that the K0∗(700)^*_0(700) is a four-quark state, i.e. a tetraquark state. This latter trend is also confirmed via a simple geometric model that assumes a tetraquark structure of the K0∗(700)^*_0(700) resonance

    Re-rolling treatment in the fermentation process improves the taste and liquor color qualities of black tea

    No full text
    Fermentation is a vital process occurred under the premise of rolling affecting black tea quality. Theoretically, re-rolling during fermentation will remodel the biochemical conditions of tea leaves, and thus influence black tea quality. Herein, we studied the effect of re-rolling on black tea taste and liquor color. Sensory evaluation showed that re-rolling significantly weakened the astringency taste and improved the redness and luminance of liquor. With re-rolling, the color attributes of a* and L* and the contents of theaflavins and thearubigins were significantly improved. Metabolomics analysis showed that the contents of 110 non-volatile compounds were significantly different among black teas with different rolling treatments. In summary, re-rolling accelerated the oxidation of polyphenols into pigments, the hydrolysis of proteins into amino acids, and the metabolism of alkaloids, organic acids, glycosidically-bound volatiles, and lipids during the fermentation period. Our study provided a novel and simple way to improve black tea quality

    Achieve a high electrochemical oxidation activity by a self-assembled cermet composite anode with low Ni content for solid oxide fuel cells

    No full text
    Funding Information: The financial support from the National Natural Science Foundation of China under contract number 22075205 and the support of Tianjin Municipal Science and Technology Commission under contract number 19JCYBJC21700 are gratefully acknowledged. The work has been also supported by the Program of Introducing Talents to the University Disciplines under file number B06006, and the Program for Changjiang Scholars and Innovative Research Teams in Universities under file number IRT 0641. Publisher Copyright: © 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.Ni-based cermets are the most widely used anode materials for solid oxide fuel cells. Reducing the content of Ni is beneficial to anode stability but usually unfavorable for the catalytic activity. In this study, Ni-Ce0.8Sm0.2O2-ÎŽ anode with a low Ni content is synthesized through a polymer-directed evaporation-induced self-assembly strategy. Ni distributes evenly in the anode, resulting in an enlarged triple-phase boundary region and improved reactivity of lattice oxygen in the oxide phase. The anode containing 5 wt.% Ni possesses the highest amounts of oxygen vacancies and Ce3+/Ce4+ redox pairs that facilitates the charge transfer process, which is one of the rate-determining steps of anode reaction. Consequently, that anode shows the lowest polarization resistance of 0.014 Ω cm2 at 700 °C, much lower than those of other Ni-based anodes prepared through conventional techniques such as impregnation and solid-mixing. With that anode, a single cell supported by a 480-ÎŒm-thick Ce0.8Sm0.2O2-ÎŽ electrolyte layer exhibits the maximum power density of 270 mW cm−2 at 700 °C. The anode also shows a promising stability.Peer reviewe

    sj-docx-1-tar-10.1177_17534666231222333 – Supplemental material for Pleural fluid carbohydrate antigen 72-4 and malignant pleural effusion: a diagnostic test accuracy study

    No full text
    Supplemental material, sj-docx-1-tar-10.1177_17534666231222333 for Pleural fluid carbohydrate antigen 72-4 and malignant pleural effusion: a diagnostic test accuracy study by Xi-Shan Cao, Li Yan, Ting-Wang Jiang, Jin-Hong Huang, Hong Chen, José M. Porcel, Wen-Qi Zheng and Zhi-De Hu in Therapeutic Advances in Respiratory Disease</p