76 research outputs found

    Novel Flame-Actuated Soft Actuator Based on a Multilayer Liquid Crystal Elastomer/Hydrogel Composite

    No full text
    A novel flame-actuated soft actuator based on a multilayer liquid crystal elastomer/hydrogel composite was fabricated in this work. Flame is a preferable external stimulus over light, heat, and electricity in terms of its abundant accessibility in a fire scenario. Nevertheless, employing flame as the external stimulus introduces novel challenges for soft actuator materials as they must possess incombustible properties. Here, hydrogel layers are grafted on both surfaces of the liquid crystal elastomer (LCE), resulting in the fabrication of a trilayered LCE-hydrogel composite. The LCE-hydrogel composite demonstrates remarkable flame retardancy, shape memory performance, and tailorable surface adhesion. The hydrogel’s remarkable water absorption and heat insulation properties confer excellent flame retardancy to the composite, preventing ignition for at least 10 s during the open flame test. The shape memory performance is attributed to the orientation of the internal LCE layer and the flexibility of the external hydrogel layers. The surface adhesion of the hydrogel layers is tailored by adjusting their water content. As the water content decreases from 100 to 60%, the surface adhesion energy increases from 6.2 to 70.3 J/m2. A flame-actuated, clip-like soft robot capable of cyclically grasping and releasing objects was constructed, showcasing its promising application potential. This work presents an unprecedented flame-actuated LCE-based composite for the first time, which offers a fresh perspective for researchers to investigate alternative actuation approaches in the field of soft robotics

    Novel Flame-Actuated Soft Actuator Based on a Multilayer Liquid Crystal Elastomer/Hydrogel Composite

    No full text
    A novel flame-actuated soft actuator based on a multilayer liquid crystal elastomer/hydrogel composite was fabricated in this work. Flame is a preferable external stimulus over light, heat, and electricity in terms of its abundant accessibility in a fire scenario. Nevertheless, employing flame as the external stimulus introduces novel challenges for soft actuator materials as they must possess incombustible properties. Here, hydrogel layers are grafted on both surfaces of the liquid crystal elastomer (LCE), resulting in the fabrication of a trilayered LCE-hydrogel composite. The LCE-hydrogel composite demonstrates remarkable flame retardancy, shape memory performance, and tailorable surface adhesion. The hydrogel’s remarkable water absorption and heat insulation properties confer excellent flame retardancy to the composite, preventing ignition for at least 10 s during the open flame test. The shape memory performance is attributed to the orientation of the internal LCE layer and the flexibility of the external hydrogel layers. The surface adhesion of the hydrogel layers is tailored by adjusting their water content. As the water content decreases from 100 to 60%, the surface adhesion energy increases from 6.2 to 70.3 J/m2. A flame-actuated, clip-like soft robot capable of cyclically grasping and releasing objects was constructed, showcasing its promising application potential. This work presents an unprecedented flame-actuated LCE-based composite for the first time, which offers a fresh perspective for researchers to investigate alternative actuation approaches in the field of soft robotics

    Novel Flame-Actuated Soft Actuator Based on a Multilayer Liquid Crystal Elastomer/Hydrogel Composite

    No full text
    A novel flame-actuated soft actuator based on a multilayer liquid crystal elastomer/hydrogel composite was fabricated in this work. Flame is a preferable external stimulus over light, heat, and electricity in terms of its abundant accessibility in a fire scenario. Nevertheless, employing flame as the external stimulus introduces novel challenges for soft actuator materials as they must possess incombustible properties. Here, hydrogel layers are grafted on both surfaces of the liquid crystal elastomer (LCE), resulting in the fabrication of a trilayered LCE-hydrogel composite. The LCE-hydrogel composite demonstrates remarkable flame retardancy, shape memory performance, and tailorable surface adhesion. The hydrogel’s remarkable water absorption and heat insulation properties confer excellent flame retardancy to the composite, preventing ignition for at least 10 s during the open flame test. The shape memory performance is attributed to the orientation of the internal LCE layer and the flexibility of the external hydrogel layers. The surface adhesion of the hydrogel layers is tailored by adjusting their water content. As the water content decreases from 100 to 60%, the surface adhesion energy increases from 6.2 to 70.3 J/m2. A flame-actuated, clip-like soft robot capable of cyclically grasping and releasing objects was constructed, showcasing its promising application potential. This work presents an unprecedented flame-actuated LCE-based composite for the first time, which offers a fresh perspective for researchers to investigate alternative actuation approaches in the field of soft robotics

    Novel Flame-Actuated Soft Actuator Based on a Multilayer Liquid Crystal Elastomer/Hydrogel Composite

    No full text
    A novel flame-actuated soft actuator based on a multilayer liquid crystal elastomer/hydrogel composite was fabricated in this work. Flame is a preferable external stimulus over light, heat, and electricity in terms of its abundant accessibility in a fire scenario. Nevertheless, employing flame as the external stimulus introduces novel challenges for soft actuator materials as they must possess incombustible properties. Here, hydrogel layers are grafted on both surfaces of the liquid crystal elastomer (LCE), resulting in the fabrication of a trilayered LCE-hydrogel composite. The LCE-hydrogel composite demonstrates remarkable flame retardancy, shape memory performance, and tailorable surface adhesion. The hydrogel’s remarkable water absorption and heat insulation properties confer excellent flame retardancy to the composite, preventing ignition for at least 10 s during the open flame test. The shape memory performance is attributed to the orientation of the internal LCE layer and the flexibility of the external hydrogel layers. The surface adhesion of the hydrogel layers is tailored by adjusting their water content. As the water content decreases from 100 to 60%, the surface adhesion energy increases from 6.2 to 70.3 J/m2. A flame-actuated, clip-like soft robot capable of cyclically grasping and releasing objects was constructed, showcasing its promising application potential. This work presents an unprecedented flame-actuated LCE-based composite for the first time, which offers a fresh perspective for researchers to investigate alternative actuation approaches in the field of soft robotics

    Predictability of HOMA-IR for Gestational Diabetes Mellitus in Early Pregnancy Based on Different First Trimester BMI Values

    No full text
    Objective: To investigate the ability of homeostasis model assessment of insulin resistance (HOMA-IR) in early pregnancy for predicting gestational diabetes mellitus (GDM) in Chinese women with different first-trimester body mass index (FT-BMI) values. Methods: Baseline characteristics and laboratory tests were collected at the first prenatal visit (6–12 weeks of gestation). GDM was diagnosed by a 75 g oral glucose tolerance test (OGTT) at 24–28 weeks of gestation. Partial correlation analysis and binary logistic regression were applied to identify the association between HOMA-IR and GDM. The cutoff points for predicting GDM were estimated using receiver operating characteristic (ROC) curve analysis. Results: Of the total of 1343 women, 300 (22.34%) were diagnosed with GDM in the 24–28 weeks of gestation. Partial correlation analysis and binary logistic regression verified HOMA-IR as a significant risk factor for GDM in the normal weight subgroup (FT-BMI 2) (adjusted OR 2.941 [95% CI 2.153, 4.016], P 2 ≤ FT-BMI 2) (adjusted OR 3.188 [95% CI 2.011, 5.055], P 2) (adjusted OR 9.415 [95% CI 1.712, 51.770], p = 0.01). The cutoff values of HOMA-IR were 1.52 (area under the curve (AUC) 0.733, 95% CI 0.701–0.765, p p p p Conclusions: Increased HOMA-IR in early pregnancy is a risk factor for GDM, and HOMA-IR can be affected by body weight. The cutoff value of HOMA-IR to predict GDM should be distinguished by different FT-BMI values

    Segmentation of Lung Nodules Using Improved 3D-UNet Neural Network

    No full text
    Lung cancer has one of the highest morbidity and mortality rates in the world. Lung nodules are an early indicator of lung cancer. Therefore, accurate detection and image segmentation of lung nodules is of great significance to the early diagnosis of lung cancer. This paper proposes a CT (Computed Tomography) image lung nodule segmentation method based on 3D-UNet and Res2Net, and establishes a new convolutional neural network called 3D-Res2UNet. 3D-Res2Net has a symmetrical hierarchical connection network with strong multi-scale feature extraction capabilities. It enables the network to express multi-scale features with a finer granularity, while increasing the receptive field of each layer of the network. This structure solves the deep level problem. The network is not prone to gradient disappearance and gradient explosion problems, which improves the accuracy of detection and segmentation. The U-shaped network ensures the size of the feature map while effectively repairing the lost features. The method in this paper was tested on the LUNA16 public dataset, where the dice coefficient index reached 95.30% and the recall rate reached 99.1%, indicating that this method has good performance in lung nodule image segmentation

    In Vitro and In Vivo Anti-Inflammatory Effects of Polyphyllin VII through Downregulating MAPK and NF-κB Pathways

    No full text
    Background: Polyphyllin VII (PP7), a steroidal saponin from Paris polyphylla, has been found to exert strong anticancer activity. Little is known about the anti-inflammatory property of PP7. In this study, the anti-inflammatory activity and its underlying mechanisms of PP7 were evaluated in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and in multiple animal models. Methods: The content of nitric oxide (NO) was determined by spectrophotometry. The levels of prostaglandin E2 (PGE2) and cytokines were measured by enzyme-linked immunosorbent assay (ELISA) assay. The mRNA expression of pro-inflammatory genes was determined by qPCR. The total and phosphorylated protein levels were examined by Western blotting. The in vivo anti-inflammatory activities were evaluated by using mouse and zebrafish models. Results: PP7 reduced the production of NO and PGE2 and the protein and mRNA expressions of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) and enzymes (inducible NO synthase [iNOS], cyclooxygenase-2 [COX-2], and Matrix metalloproteinase-9 [MMP-9]) in LPS-induced RAW264.7 cells by suppressing the NF-κB and MAPKs pathways. Notably, PP7 markedly inhibited xylene-induced ear edema and cotton pellet-induced granuloma formation in mice and suppressed LPS and CuSO4-induced inflammation and toxicity in zebrafish embryos. Conclusion: This study demonstrates that PP7 exerts strong anti-inflammatory activities in multiple in vitro and in vivo models and suggests that PP7 is a potential novel therapeutic agent for inflammatory diseases

    Open data from the first and second observing runs of Advanced LIGO and Advanced Virgo

    Get PDF
    Advanced LIGO and Advanced Virgo are monitoring the sky and collecting gravitational-wave strain data with sufficient sensitivity to detect signals routinely. In this paper we describe the data recorded by these instruments during their first and second observing runs. The main data products are gravitational-wave strain time series sampled at 16384 Hz. The datasets that include this strain measurement can be freely accessed through the Gravitational Wave Open Science Center at http://gw-openscience.org, together with data-quality information essential for the analysis of LIGO and Virgo data, documentation, tutorials, and supporting software

    Acoustic Field of a Linear Phased Array: A Simulation Study of Ultrasonic Circular Tube Material

    No full text
    As ultrasonic wave field radiated by an ultrasonic transducer influences the results of ultrasonic nondestructive testing, simulation and emulation are widely used in nondestructive testing. In this paper, a simulation study is proposed to detect defects in a circular tube material. Firstly, the ultrasonic propagation behavior was analyzed, and a formulation of the Multi-Gaussian beam model (MGB) based on a superposition of Gaussian beams is described. The expression of the acoustic field from a linear phased-array ultrasonic transducer in the condition of a convex interface on the circular tube material is proposed. Secondly, in order to make the tapered probe wedge better fit the curved circular tube material and carry out the ultrasonic inspection of the curved surface, it was necessary to pare the angle probe wedge. Finally, acoustic field simulations in a circular tube were carried out and analyzed. The simulation results indicated that the method of ultrasonic phased-array inspection is feasible in circular tube testing. Tube materials with different curvatures need different array element lengths and widths to get the desired focused beam
    • …
    corecore