382 research outputs found

    Barriers towards intermodality for pursuing to-work commuters modal shift to bus rapid transit

    Get PDF
    Institute of Transport and Logistics Studies. Faculty of Economics and Business. The University of Sydne

    Accurate, high-throughput typing of copy number variation using paralogue ratios from dispersed repeats

    Get PDF
    Recent work has demonstrated an unexpected prevalence of copy number variation in the human genome, and has highlighted the part this variation may play in predisposition to common phenotypes. Some important genes vary in number over a high range (e.g. DEFB4, which commonly varies between two and seven copies), and have posed formidable technical challenges for accurate copy number typing, so that there are no simple, cheap, high-throughput approaches suitable for large-scale screening. We have developed a simple comparative PCR method based on dispersed repeat sequences, using a single pair of precisely designed primers to amplify products simultaneously from both test and reference loci, which are subsequently distinguished and quantified via internal sequence differences. We have validated the method for the measurement of copy number at DEFB4 by comparison of results from >800 DNA samples with copy number measurements by MAPH/REDVR, MLPA and array-CGH. The new Paralogue Ratio Test (PRT) method can require as little as 10 ng genomic DNA, appears to be comparable in accuracy to the other methods, and for the first time provides a rapid, simple and inexpensive method for copy number analysis, suitable for application to typing thousands of samples in large case-control association studies

    Cross species transmission of ovine Johnes Disease - Phase 1 : National Ovine Johne’s Disease Control and Evaluation Program.

    Get PDF
    Johne’s disease was investigated in fibre goats on several farms. The disease was caused by sheep [S] strains of Mycobacterium avium subsp. paratuberculosis. The infection appeared to be less severe than the same infection in sheep in that fewer goats than sheep became infected, and fewer goats than sheep developed obvious signs of the infection. However, infected goats shed the organism in their faeces and therefore were able to spread the infection to other goats and sheep. Therefore inclusion of goats in the control program for ovine Johne’s disease is justified. A communication program is recommended to advise producers that ovine Johne’s disease in goats may not be obvious and that testing should be undertaken to ensure disease is not present. The impact of ovine Johne’s disease on the fibre goat industry is projected not to be great due to the small number of herds likely to be infected

    Vesicular hand eczema transcriptome analysis provides insights into its pathophysiology

    Get PDF
    Hand eczema is a common inflammatory skin condition of the hands whose pathogenesis is largely unknown. More insight and knowledge of the disease on a more fundamental level might lead to a better understanding of the biological processes involved, which could provide possible new treatment strategies. We aimed to profile the transcriptome of lesional palmar epidermal skin of patients suffering from vesicular hand eczema using RNA‐sequencing. RNA‐sequencing was performed to identify differentially expressed genes in lesional vs. non‐lesional palmar epidermal skin from a group of patients with vesicular hand eczema compared to healthy controls. Comprehensive real‐time quantitative PCR analyses and immunohistochemistry were used for validation of candidate genes and protein profiles for vesicular hand eczema. Overall, a significant and high expression of genes/proteins involved in keratinocyte host defense and inflammation was found in lesional skin. Furthermore, we detected several molecules, both up or downregulated in lesional skin, which are involved in epidermal differentiation. Immune signalling genes were found to be upregulated in lesional skin, albeit with relatively low expression levels. Non‐lesional patient skin showed no significant differences compared to healthy control skin. Lesional vesicular hand eczema skin shows a distinct expression profile compared to non‐lesional skin and healthy control skin. Notably, the overall results indicate a large overlap between vesicular hand eczema and earlier reported atopic dermatitis lesional transcriptome profiles, which suggests that treatments for atopic dermatitis could also be effective in (vesicular) hand eczema

    A molecular signature of epithelial host defense: comparative gene expression analysis of cultured bronchial epithelial cells and keratinocytes

    Get PDF
    BACKGROUND: Epithelia are barrier-forming tissues that protect the organism against external noxious stimuli. Despite the similarity in function of epithelia, only few common protective mechanisms that are employed by these tissues have been systematically studied. Comparative analysis of genome-wide expression profiles generated by means of Serial Analysis of Gene Expression (SAGE) is a powerful approach to yield further insight into epithelial host defense mechanisms. We performed an extensive comparative analysis of previously published SAGE data sets of two types of epithelial cells, namely bronchial epithelial cells and keratinocytes, in which the response to pro-inflammatory cytokines was assessed. These data sets were used to elucidate a common denominator in epithelial host defense. RESULTS: Bronchial epithelial cells and keratinocytes were found to have a high degree of overlap in gene expression. Using an in silico approach, an epithelial-specific molecular signature of gene expression was identified in bronchial epithelial cells and keratinocytes comprising of family members of keratins, small proline-rich proteins and proteinase inhibitors. Whereas some of the identified genes were known to be involved in inflammation, the majority of the signature represented genes that were previously not associated with host defense. Using polymerase chain reaction, presence of expression of selected tissue-specific genes was validated. CONCLUSION: Our comparative analysis of gene transcription reveals that bronchial epithelial cells and keratinocytes both express a subset of genes that is likely to be essential in epithelial barrier formation in these cell types. The expression of these genes is specific for bronchial epithelial cells and keratinocytes and is not seen in non-epithelial cells. We show that bronchial epithelial cells, similar to keratinocytes, express components that are able to form a cross-linked protein envelope that may contribute to an effective barrier against noxious stimuli and pathogens
    corecore