62 research outputs found

    Xanthine Oxidase Inhibitor Febuxostat Exerts an Anti-Inflammatory Action and Protects against Diabetic Nephropathy Development in KK-Ay Obese Diabetic Mice

    No full text
    Hyperuricemia has been recognized as a risk factor for insulin resistance as well as one of the factors leading to diabetic kidney disease (DKD). Since DKD is the most common cause of end-stage renal disease, we investigated whether febuxostat, a xanthine oxidase (XO) inhibitor, exerts a protective effect against the development of DKD. We used KK-Ay mice, an established obese diabetic rodent model. Eight-week-old KK-Ay mice were provided drinking water with or without febuxostat (15 μg/mL) for 12 weeks and then subjected to experimentation. Urine albumin secretion and degrees of glomerular injury judged by microscopic observations were markedly higher in KK-Ay than in control lean mice. These elevations were significantly normalized by febuxostat treatment. On the other hand, body weights and high serum glucose concentrations and glycated albumin levels of KK-Ay mice were not affected by febuxostat treatment, despite glucose tolerance and insulin tolerance tests having revealed febuxostat significantly improved insulin sensitivity and glucose tolerance. Interestingly, the IL-1β, IL-6, MCP-1, and ICAM-1 mRNA levels, which were increased in KK-Ay mouse kidneys as compared with normal controls, were suppressed by febuxostat administration. These data indicate a protective effect of XO inhibitors against the development of DKD, and the underlying mechanism likely involves inflammation suppression which is independent of hyperglycemia amelioration

    Pin1 Plays Essential Roles in NASH Development by Modulating Multiple Target Proteins

    No full text
    Pin1 is one of the three known prolyl-isomerase types and its hepatic expression level is markedly enhanced in the obese state. Pin1 plays critical roles in favoring the exacerbation of both lipid accumulation and fibrotic change accompanying inflammation. Indeed, Pin1-deficient mice are highly resistant to non-alcoholic steatohepatitis (NASH) development by either a high-fat diet or methionine–choline-deficient diet feeding. The processes of NASH development can basically be separated into lipid accumulation and subsequent fibrotic change with inflammation. In this review, we outline the molecular mechanisms by which increased Pin1 promotes both of these phases of NASH. The target proteins of Pin1 involved in lipid accumulation include insulin receptor substrate 1 (IRS-1), AMP-activated protein kinase (AMPK) and acetyl CoA carboxylase 1 (ACC1), while the p60 of the NF-kB complex and transforming growth factor β (TGF-β) pathway appear to be involved in the fibrotic process accelerated by Pin1. Interestingly, Pin1 deficiency does not cause abnormalities in liver size, appearance or function. Therefore, we consider the inhibition of increased Pin1 to be a promising approach to treating NASH and preventing hepatic fibrosis

    Prolyl Isomerase Pin1 Suppresses Thermogenic Programs in Adipocytes by Promoting Degradation of Transcriptional Co-activator PRDM16

    No full text
    Summary: Non-shivering thermogenesis in adipocytes provides defense against low temperatures and obesity development, but the underlying regulatory mechanism remains to be fully clarified. Based on both markedly increased Pin1 expression in states of excess nutrition and resistance to obesity development in Pin1 null mice, we speculated that adipocyte Pin1 may play a role in thermogenic programs. Adipose-specific Pin1 knockout (adPin1 KO) mice showed enhanced transcription of thermogenic genes and tolerance to hypothermia when exposed to cold. In addition, adPin1 KO mice were resistant to high-fat diet-induced obesity and glucose intolerance. A series of experiments revealed that Pin1 binds to PRDM16 and thereby promotes its degradation through the ubiquitin-proteasome system. Consistent with these results, Pin1 deletion in differentiated adipocytes showed enhancement of thermogenic programs in response to the β3 agonist CL316243 through the upregulation of PRDM16 proteins. These observations indicate that Pin1 is a negative regulator of non-shivering thermogenesis. : Adipose Pin1 expression increases in obese mice. Pin1 associates with PRDM16 and promotes its degradation, resulting in the downregulation of UCP-1. Pin1 KO mice are resistant to obesity development and cold exposure-induced hypothermia. Thus, Pin1 is a negative regulator of thermogenesis and could be a target of obesity. Keywords: Pin1, PRDM16, UCP-1, thermogenesis, obesit

    The Xanthine Oxidase Inhibitor Febuxostat Suppresses the Progression of IgA Nephropathy, Possibly via Its Anti-Inflammatory and Anti-Fibrotic Effects in the gddY Mouse Model

    No full text
    Recent clinical studies have demonstrated the protective effect of xanthine oxidase (XO) inhibitors against chronic kidney diseases, although the underlying molecular mechanisms remain unclear. However, to date, neither clinical nor basic research has been carried out to elucidate the efficacy of XO inhibitor administration for IgA nephropathy. We thus investigated whether febuxostat, an XO inhibitor, exerts a protective effect against the development of IgA nephropathy, using gddY mice as an IgA nephropathy rodent model. Eight-week-old gddY mice were provided drinking water with (15 μg/mL) or without febuxostat for nine weeks and then subjected to experimentation. Elevated serum creatinine and degrees of glomerular sclerosis and fibrosis, judged by microscopic observations, were significantly milder in the febuxostat-treated than in the untreated gddY mice, while body weights and serum IgA concentrations did not differ between the two groups. In addition, elevated mRNA levels of inflammatory cytokines such as TNFα, MCP-1, IL-1β, and IL-6, collagen isoforms and chemokines in the gddY mouse kidneys were clearly normalized by the administration of febuxostat. These data suggest a protective effect of XO inhibitors against the development of IgA nephropathy, possibly via suppression of inflammation and its resultant fibrotic changes, without affecting the serum IgA concentration

    Roles of Gut-Derived Secretory Factors in the Pathogenesis of Non-Alcoholic Fatty Liver Disease and Their Possible Clinical Applications

    No full text
    The rising prevalence of non-alcoholic fatty liver disease (NAFLD) parallels the global increase in the number of people diagnosed with obesity and metabolic syndrome. The gut-liver axis (GLA) plays an important role in the pathogenesis of NAFLD/non-alcoholic steatohepatitis (NASH). In this review, we discuss the clinical significance and underlying mechanisms of action of gut-derived secretory factors in NAFLD/NASH, focusing on recent human studies. Several studies have identified potential causal associations between gut-derived secretory factors and NAFLD/NASH, as well as the underlying mechanisms. The effects of gut-derived hormone-associated drugs, such as glucagon-like peptide-1 analog and recombinant variant of fibroblast growth factor 19, and other new treatment strategies for NAFLD/NASH have also been reported. A growing body of evidence highlights the role of GLA in the pathogenesis of NAFLD/NASH. Larger and longitudinal studies as well as translational research are expected to provide additional insights into the role of gut-derived secretory factors in the pathogenesis of NAFLD/NASH, possibly providing novel markers and therapeutic targets in patients with NAFLD/NASH

    The SGLT2 Inhibitor Luseogliflozin Rapidly Normalizes Aortic mRNA Levels of Inflammation-Related but Not Lipid-Metabolism-Related Genes and Suppresses Atherosclerosis in Diabetic ApoE KO Mice

    No full text
    Recent clinical studies have revealed the treatment of diabetic patients with sodium glucose co-transporter2 (SGLT2) inhibitors to reduce the incidence of cardiovascular events. Using nicotinamide and streptozotocin (NA/STZ) -treated ApoE KO mice, we investigated the effects of short-term (seven days) treatment with the SGLT2 inhibitor luseogliflozin on mRNA levels related to atherosclerosis in the aorta, as well as examining the long-term (six months) effects on atherosclerosis development. Eight-week-old ApoE KO mice were treated with NA/STZ to induce diabetes mellitus, and then divided into two groups, either untreated, or treated with luseogliflozin. Seven days after the initiation of luseogliflozin administration, atherosclerosis-related mRNA levels in the aorta were compared among four groups; i.e., wild type C57/BL6J, native ApoE KO, and NA/STZ-treated ApoE KO mice, with or without luseogliflozin. Short-term luseogliflozin treatment normalized the expression of inflammation-related genes such as F4/80, TNFα, IL-1β, IL-6, ICAM-1, PECAM-1, MMP2 and MMP9 in the NA/STZ-treated ApoE KO mice, which showed marked elevations as compared with untreated ApoE KO mice. In contrast, lipid metabolism-related genes were generally unaffected by luseogliflozin treatment. Furthermore, after six-month treatment with luseogliflozin, in contrast to the severe and widely distributed atherosclerotic changes in the aortas of NA/STZ-treated ApoE KO mice, luseogliflozin treatment markedly attenuated the progression of atherosclerosis, without affecting serum lipid parameters such as high density lipoprotein, low density lipoprotein and triglyceride levels. Given that luseogliflozin normalized the aortic mRNA levels of inflammation-related, but not lipid-related, genes soon after the initiation of treatment, it is not unreasonable to speculate that the anti-atherosclerotic effect of this SGLT2 inhibitor emerges rapidly, possibly via the prevention of inflammation rather than of hyperlipidemia

    Trk-fused gene (TFG) regulates pancreatic beta cell mass and insulin secretory activity

    Get PDF
    The Trk-fused gene (TFG) is reportedly involved in the process of COPII-mediated vesicle transport and missense mutations in TFG cause several neurodegenerative diseases including hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P). The high coincidence ratio between HMSN-P and diabetes mellitus suggests TFG to have an important role(s) in glucose homeostasis. To examine this possibility, β-cell specific TFG knockout mice (βTFG KO) were generated. Interestingly, βTFG KO displayed marked glucose intolerance with reduced insulin secretion. Immunohistochemical analysis revealed smaller β-cell masses in βTFG KO than in controls, likely attributable to diminished β-cell proliferation. Consistently, β-cell expansion in response to a high-fat, high-sucrose (HFHS) diet was significantly impaired in βTFG KO. Furthermore, glucose-induced insulin secretion was also markedly impaired in islets isolated from βTFG KO. Electron microscopic observation revealed endoplasmic reticulum (ER) dilatation, suggestive of ER stress, and smaller insulin crystal diameters in β-cells of βTFG KO. Microarray gene expression analysis indicated downregulation of NF-E2 related factor 2 (Nrf2) and its downstream genes in TFG depleted islets. Collectively, TFG in pancreatic β-cells plays a vital role in maintaining both the mass and function of β-cells, and its dysfunction increases the tendency to develop glucose intolerance.This study was partly supported by a Grant-in-Aid for Research Activity Start-up (JSPS KAKENHI Grant Number JP15H06427) (to T.Y.) from the Ministry of Education, Science, Sports and Culture, Japan, and grants from Mitsubishi Tanabe Pharma (to T.Y.), Novartis Pharma (to T.Y.), Takeda Science Foundation (to Y.N.), Asahi Life Foundation (to Y.N.) and The Uehara Memorial Foundation (to Y.N.)

    Reduced SHARPIN and LUBAC Formation May Contribute to CCl4- or Acetaminophen-Induced Liver Cirrhosis in Mice

    No full text
    Linear ubiquitin chain assembly complex (LUBAC), composed of SHARPIN (SHANK-associated RH domain-interacting protein), HOIL-1L (longer isoform of heme-oxidized iron-regulatory protein 2 ubiquitin ligase-1), and HOIP (HOIL-1L interacting protein), forms linear ubiquitin on nuclear factor-κB (NF-κB) essential modulator (NEMO) and induces NF-κB pathway activation. SHARPIN expression and LUBAC formation were significantly reduced in the livers of mice 24 h after the injection of either carbon tetrachloride (CCl4) or acetaminophen (APAP), both of which produced the fulminant hepatitis phenotype. To elucidate its pathological significance, hepatic SHARPIN expression was suppressed in mice by injecting shRNA adenovirus via the tail vein. Seven days after this transduction, without additional inflammatory stimuli, substantial inflammation and fibrosis with enhanced hepatocyte apoptosis occurred in the livers. A similar but more severe phenotype was observed with suppression of HOIP, which is responsible for the E3 ligase activity of LUBAC. Furthermore, in good agreement with these in vivo results, transduction of Hepa1-6 hepatoma cells with SHARPIN, HOIL-1L, or HOIP shRNA adenovirus induced apoptosis of these cells in response to tumor necrosis factor-α (TNFα) stimulation. Thus, LUBAC is essential for the survival of hepatocytes, and it is likely that reduction of LUBAC is a factor promoting hepatocyte death in addition to the direct effect of drug toxicity

    Physiological and Pathogenic Roles of Prolyl Isomerase Pin1 in Metabolic Regulations via Multiple Signal Transduction Pathway Modulations

    No full text
    Prolyl isomerases are divided into three groups, the FKBP family, Cyclophilin and the Parvulin family (Pin1 and Par14). Among these isomerases, Pin1 is a unique prolyl isomerase binding to the motif including pSer/pThr-Pro that is phosphorylated by kinases. Once bound, Pin1 modulates the enzymatic activity, protein stability or subcellular localization of target proteins by changing the cis- and trans-formations of proline. Several studies have examined the roles of Pin1 in the pathogenesis of cancers and Alzheimer’s disease. On the other hand, recent studies have newly demonstrated Pin1 to be involved in regulating glucose and lipid metabolism. Interestingly, while Pin1 expression is markedly increased by high-fat diet feeding, Pin1 KO mice are resistant to diet-induced obesity, non-alcoholic steatohepatitis and diabetic vascular dysfunction. These phenomena result from the binding of Pin1 to several key factors regulating metabolic functions, which include insulin receptor substrate-1, AMPK, Crtc2 and NF-κB p65. In this review, we focus on recent advances in elucidating the physiological roles of Pin1 as well as the pathogenesis of disorders involving this isomerase, from the viewpoint of the relationships between signal transductions and metabolic functions