48,272 research outputs found

    Self-regulation in the Bolker-Pacala model

    Full text link
    The Markov dynamics is studied of an infinite system of point entities placed in \mathds{R}^d, in which the constituents disperse and die, also due to competition. Assuming that the dispersal and competition kernels are continuous and integrable we show that the evolution of states of this model preserves their sub-Poissonicity, and hence the local self-regulation (suppression of clustering) takes place. Upper bounds for the correlation functions of all orders are also obtained for both long and short dispersals, and for all values of the intrinsic mortality rate.Comment: arXiv admin note: substantial text overlap with arXiv:1702.0292

    Gibbs random fields with unbounded spins on unbounded degree graphs

    Full text link
    Gibbs random fields corresponding to systems of real-valued spins (e.g. systems of interacting anharmonic oscillators) indexed by the vertices of unbounded degree graphs with a certain summability property are constructed. It is proven that the set of tempered Gibbs random fields is non-void and weakly compact, and that they obey uniform exponential integrability estimates. In the second part of the paper, a class of graphs is described in which the mentioned summability is obtained as a consequence of a property, by virtue of which vertices of large degree are located at large distances from each other. The latter is a stronger version of a metric property, introduced in [Bassalygo, L. A. and Dobrushin, R. L. (1986). \textrm{Uniqueness of a Gibbs field with a random potential--an elementary approach.}\textit{Theory Probab. Appl.} {\bf 31} 572--589]

    Computations on Nondeterministic Cellular Automata

    Get PDF
    The work is concerned with the trade-offs between the dimension and the time and space complexity of computations on nondeterministic cellular automata. It is proved, that 1). Every NCA \Cal A of dimension rr, computing a predicate PP with time complexity T(n) and space complexity S(n) can be simulated by rr-dimensional NCA with time and space complexity O(T1r+1Srr+1)O(T^{\frac{1}{r+1}} S^{\frac{r}{r+1}}) and by r+1r+1-dimensional NCA with time and space complexity O(T1/2+S)O(T^{1/2} +S). 2) For any predicate PP and integer r>1r>1 if \Cal A is a fastest rr-dimensional NCA computing PP with time complexity T(n) and space complexity S(n), then T=O(S)T= O(S). 3). If Tr,PT_{r,P} is time complexity of a fastest rr-dimensional NCA computing predicate PP then T_{r+1,P} &=O((T_{r,P})^{1-r/(r+1)^2}), T_{r-1,P} &=O((T_{r,P})^{1+2/r}). Similar problems for deterministic CA are discussed.Comment: 18 pages in AmsTex, 3 figures in PostScrip
    • …
    corecore