173 research outputs found

    Data_Sheet_1_Altered intrinsic functional brain architecture in patients with functional constipation: a surface-based network study.docx

    No full text
    BackgroundFunctional constipation (FCon) is a common functional gastrointestinal disorder (FGID). Studies have indicated a higher likelihood of psychiatric disorders, such as anxiety, depression, sleep disturbances, and impaired concentration, among patients with FCon. However, the underlying pathophysiological mechanisms responsible for these symptoms in FCon patients remain to be fully elucidated. The human brain is a complex network architecture with several fundamental organizational properties. Neurological interactions between gut symptoms and psychiatric issues may be closely associated with these complex networks.MethodsIn the present study, a total of 35 patients with FCon and 40 healthy controls (HC) were recruited for a series of clinical examinations and resting-state functional magnetic imaging (RS-fMRI). We employed the surface-based analysis (SBA) approach, utilizing the Schaefer cortical parcellation template and Tikhonov regularization. Graph theoretical analysis (GTA) and functional connectivity (FC) analysis of RS-fMRI were conducted to investigate the aberrant network alterations between the two groups. Additionally, correlation analyses were performed between the network indices and clinical variables in patients with FCon.ResultsAt the global level, we found altered topological properties and networks in patients with FCon, mainly including the significantly increased clustering coefficient (CP), local efficiency (Eloc), and shortest path length (LP), whereas the decreased global efficiency (Eglob) compared to HC. At the regional level, patients with FCon exhibited increased nodal efficiency in the frontoparietal network (FPN). Furthermore, FC analysis demonstrated several functional alterations within and between the Yeo 7 networks, particularly including visual network (VN), limbic network (LN), default mode network (DMN), and somatosensory-motor network (SMN) in sub-network and large-scale network analysis. Correlation analysis revealed that there were no significant associations between the network metrics and clinical variables in the present study.ConclusionThese results highlight the altered topological architecture of functional brain networks associated with visual perception abilities, emotion regulation, sensorimotor processing, and attentional control, which may contribute to effectively targeted treatment modalities for patients with FCon.</p

    Dopaminergic damage pattern predicts phenoconversion time in isolated rapid eye movement sleep behavior disorder.

    No full text
    PURPOSE The exact phenoconversion time from isolated rapid eye movement (REM) sleep behavior disorder (iRBD) to synucleinopathies remains unpredictable. This study investigated whole-brain dopaminergic damage pattern (DDP) with disease progression and predicted phenoconversion time in individual patients. METHODS Age-matched 33 iRBD patients and 20 healthy controls with 11C-CFT-PET scans were enrolled. The patients were followed up 2-10 (6.7 ± 2.0) years. The phenoconversion year was defined as the base year, and every 2 years before conversion was defined as a stage. Support vector machine with leave-one-out cross-validation strategy was used to perform prediction. RESULTS Dopaminergic degeneration of iRBD was found to occur about 6 years before conversion and then abnormal brain regions gradually expanded. Using DDP, area under curve (AUC) was 0.879 (90% sensitivity and 88.3% specificity) for predicting conversion in 0-2 years, 0.807 (72.7% sensitivity and 83.3% specificity) in 2-4 years, 0.940 (100% sensitivity and 84.6% specificity) in 4-6 years, and 0.879 (100% sensitivity and 80.7% specificity) over 6 years. In individual patients, predicted stages correlated with whole-brain dopaminergic levels (r =  - 0.740, p < 0.001). CONCLUSION Our findings suggest that DDP could accurately predict phenoconversion time of individual iRBD patients, which may help to screen patients for early intervention

    Potential biomarkers for psoriasis topical treatment by in-depth serum proteomics

    No full text
    Background Psoriasis is a chronic skin disease, and topical sequential therapy with a combination of calcipotriol and calcipotriol betamethasone is currently approved topical treatment. However, the exact mechanism by which this treatment regimen relieves psoriasis is unknown. Method We assembled a cohort of 65 psoriasis patients and divided post-treatment cohort into responder group and non-responder group according to the Psoriasis Area Severity Index (PASI) score after 12-week treatment. We measured the expression levels of proteins in collected 130 serum samples using our in-depth proteomics platform with a data-independent acquisition mass spectrometer and antibody microarray. We performed bioinformatics analyses of the biologic processes and signaling pathways that were changed in the responder group and constructed a proteomics landscape of psoriasis pathogenesis response to treatment. We then validated the biomarkers of disease severity in an independent cohort of 88 samples using an enzyme-linked immunosorbent assay. Results We first identified 174 differentially expressed proteins (DEPs) for comparative analysis of proteins between responders and non-responders at baseline (p < 0.05). Then pathway analysis showed that the responders focused more on signaling molecules and interaction, complement and coagulation cascades, whereas the non-responders more on signal transduction and IL-17 signaling pathways. We further identified four candidate biomarkers (COLEC11, C1QA, BNC2, ITIH4) response to treatment. We also found 125 DEPs (p < 0.05) after treatment compared with before treatment in responder group. Pathway analysis showed an enrichment in pathways related to complement and coagulation cascades, phagosome, ECM-receptor interaction, cholesterol metabolism, vitamin digestion and absorption. CD14 was validated as potential biomarkers for the disease severity of psoriasis and treatment targets. Conclusion In this work, we analyzed the response to topical sequential therapy and finally identified four biomarkers. Additionally, we found that topical sequential therapy may alleviate psoriasis by regulating lipid metabolism and modulating the immune response by affecting the complement activation process

    Altered intrinsic functional brain architecture in patients with functional constipation: a surface-based network study

    Get PDF
    BackgroundFunctional constipation (FCon) is a common functional gastrointestinal disorder (FGID). Studies have indicated a higher likelihood of psychiatric disorders, such as anxiety, depression, sleep disturbances, and impaired concentration, among patients with FCon. However, the underlying pathophysiological mechanisms responsible for these symptoms in FCon patients remain to be fully elucidated. The human brain is a complex network architecture with several fundamental organizational properties. Neurological interactions between gut symptoms and psychiatric issues may be closely associated with these complex networks.MethodsIn the present study, a total of 35 patients with FCon and 40 healthy controls (HC) were recruited for a series of clinical examinations and resting-state functional magnetic imaging (RS-fMRI). We employed the surface-based analysis (SBA) approach, utilizing the Schaefer cortical parcellation template and Tikhonov regularization. Graph theoretical analysis (GTA) and functional connectivity (FC) analysis of RS-fMRI were conducted to investigate the aberrant network alterations between the two groups. Additionally, correlation analyses were performed between the network indices and clinical variables in patients with FCon.ResultsAt the global level, we found altered topological properties and networks in patients with FCon, mainly including the significantly increased clustering coefficient (CP), local efficiency (Eloc), and shortest path length (LP), whereas the decreased global efficiency (Eglob) compared to HC. At the regional level, patients with FCon exhibited increased nodal efficiency in the frontoparietal network (FPN). Furthermore, FC analysis demonstrated several functional alterations within and between the Yeo 7 networks, particularly including visual network (VN), limbic network (LN), default mode network (DMN), and somatosensory-motor network (SMN) in sub-network and large-scale network analysis. Correlation analysis revealed that there were no significant associations between the network metrics and clinical variables in the present study.ConclusionThese results highlight the altered topological architecture of functional brain networks associated with visual perception abilities, emotion regulation, sensorimotor processing, and attentional control, which may contribute to effectively targeted treatment modalities for patients with FCon

    SCD1 Sustains Homeostasis of Bulge Niche via Maintaining Hemidesmosomes in Basal Keratinocytes

    No full text
    Abstract Niche for stem cells profoundly influences their maintenance and fate during tissue homeostasis and pathological disorders; however, the underlying mechanisms and tissue‐specific features remain poorly understood. Here, it is reported that fatty acid desaturation catabolized by stearoyl‐coenzyme A desaturase 1 (SCD1) regulates hair follicle stem cells (HFSCs) and hair growth by maintaining the bulge, niche for HFSCs. Scd1 deletion in mice results in abnormal hair growth, an effect exerted directly on keratin K14+ keratinocytes rather than on HFSCs. Mechanistically, Scd1 deficiency impairs the level of integrin α6β4 complex and thus the assembly of hemidesmosomes (HDs). The disruption of HDs allows the aberrant activation of focal adhesion kinase and PI3K in K14+ keratinocytes and subsequently their differentiation and proliferation. The overgrowth of basal keratinocytes results in downward extension of the outer root sheath and interruption of bulge formation. Then, inhibition of PI3K signaling in Scd1−/− mice normalizes the bulge, HFSCs, and hair growth. Additionally, supplementation of oleic acid to Scd1−/− mice reestablishes HDs and the homeostasis of bulge niche, and restores hair growth. Thus, SCD1 is critical in regulating hair growth through stabilizing HDs in basal keratinocytes and thus sustaining bulge for HFSC residence and periodic activity

    Detection of the nonlinear response of vegetation to terrestrial water storage changes in central Asian endorheic basins

    No full text
    The terrestrial water storage anomaly (TWSA) is an important parameter for assessing the land water budget, and it interacts well with terrestrial ecosystems via complex hydrological processes. Recently, the decline in central Asian terrestrial water storage (TWS) has threatened the health of local ecosystems. Therefore, it is of great significance to adopt an efficient approach to explore and identify the nonlinear relationship between two important indicators, i.e., the TWSA and normalized difference vegetation index (NDVI) in the arid central Asian endorheic basins. In this study, we analysed the long-term trends of the TWSA and NDVI, and identified the lag month (1 month) as the optimal moving window of the nonlinear Granger causality test embedded in random forest to detect the nonlinear NDVI change response of NDVI changes in vegetation to the TWSA from 2003 to 2015. There are decreasing trends in TWSAs over approximately 81.7% of the study area and the NDVI generally decreased resulting in approximately 36% vegetation browning in the study area. The nonlinear Granger unidirectional causes of the TWSA were responsible for 97.9% of the NDVI variation in the study area considering the optimal response time for moving windows. The causes of vegetation browning in the central Asian Aral Sea basin and vegetation greening in the basins of Northwest China could be mostly explained by the changes in TWS. Our findings contribute to understanding the nonlinear causal linkages between vegetation and the TWSA in endorheic basins, and these findings provide insights for obtaining terrestrial water consumption patterns and water resource management under the joint influence of climate change and human activities

    Artificial intelligence-assisted point-of-care testing system for ultrafast and quantitative detection of drug-resistant bacteria

    No full text
    As one of the major causes of antimicrobial resistance, beta-lactamase develops rapidly among bacteria. Detection of beta-lactamase in an efficient and low-cost point-of-care testing (POCT) way is urgently needed. However, due to the volatile environmental factors, the quantitative measurement of current POCT is often inaccurate. Herein, we demonstrate an artificial intelligence (AI)-assisted mobile health system that consists of a paper-based beta-lactamase fluorogenic probe analytical device and a smartphone-based AI cloud. An ultrafast broad-spectrum fluorogenic probe (B1) that could respond to beta-lactamase within 20 s was first synthesized, and the detection limit was determined to be 0.13 nmol/L. Meanwhile, a three-dimensional microfluidic paper-based analytical device was fabricated for integration of B1. Also, a smartphone-based AI cloud was developed to correct errors automatically and output results intelligently. This smart system could calibrate the temperature and pH in the beta-lactamase level detection in complex samples and mice infected with various bacteria, which shows the problem-solving ability in interdisciplinary research, and demonstrates potential clinical benefits.Funding Agencies|National Key R&amp;D Program of China [2020YFA0709900]; National Natural Science Foundation of China [62288102, 22077101, 52073230]; Joint Research Funds of Department of Science &amp; Technology of Shaanxi Province; Northwestern~Polytechnical University [2020GXLH-Z-008, 2020GXLH-Z-013]; Shaanxi Provincial Science Fund for Distinguished Young Scholars [2023-JC-JQ-32]; Key Research and Development Program of Shaanxi [2020ZDLGY13-04]; Fundamental Research Funds for the Central Universities and Innovation Foundation for Doctorate Dissertation of Northwestern Polytechnical University [CX2021121]</p

    Achieving High Performance Electrode for Energy Storage with Advanced Prussian Blue-Drived Nanocomposites&mdash;A Review

    No full text
    Recently, Prussian blue analogues (PBAs)-based anode materials (oxides, sulfides, selenides, phosphides, borides, and carbides) have been extensively investigated in the field of energy conversion and storage. This is due to PBAs&rsquo; unique properties, including high theoretical specific capacity, environmental friendly, and low cost. We thoroughly discussed the formation of PBAs in conjunction with other materials. The performance of composite materials improves the electrochemical performance of its energy storage materials. Furthermore, new insights are provided for the manufacture of low-cost, high-capacity, and long-life battery materials in order to solve the difficulties in different electrode materials, combined with advanced manufacturing technology and principles. Finally, PBAs and their composites&rsquo; future challenges and opportunities are discussed

    Achieving High Performance Electrode for Energy Storage with Advanced Prussian Blue-Drived Nanocomposites—A Review

    No full text
    Recently, Prussian blue analogues (PBAs)-based anode materials (oxides, sulfides, selenides, phosphides, borides, and carbides) have been extensively investigated in the field of energy conversion and storage. This is due to PBAs’ unique properties, including high theoretical specific capacity, environmental friendly, and low cost. We thoroughly discussed the formation of PBAs in conjunction with other materials. The performance of composite materials improves the electrochemical performance of its energy storage materials. Furthermore, new insights are provided for the manufacture of low-cost, high-capacity, and long-life battery materials in order to solve the difficulties in different electrode materials, combined with advanced manufacturing technology and principles. Finally, PBAs and their composites’ future challenges and opportunities are discussed

    Cu/CuO-Decorated Peanut-Shell-Derived Biochar for the Efficient Degradation of Tetracycline via Peroxymonosulfate Activation

    No full text
    Biochar (BC) usually has abundant surface functional groups, well-developed pore structures and high specific surface areas, which can combine with transition metals for peroxymonosulfate (PMS) activation to degrade organics. In this paper, BC modified with Cu/CuO was prepared by a modified impregnation pyrolysis method using peanut shells as raw materials. The morphology, structure and physicochemical properties were analyzed. Results showed that the originally smooth BC surface was modified into a rough structure with distributed metal particles, and the specific surface area of the modified Cu/CuO-BC700 (i.e., Cu/CuO-BC) increased from the initial 22.57 to 192.64 m2/g. The Cu/CuO-BC was employed for PMS activation and tetracycline (TC) degradation, achieving a removal efficiency of 93.2% at TC initial concentration 20 mg/L, PMS concentration 0.5 mM and catalyst dosage 0.1 g/L after 30 min. The influence of co-existing anions in the actual water on TC degradation followed the order of HCO3− > H2PO4− > Cl−, and HA had an inhibitory effect on TC degradation. A variety of active species participated in TC degradation, and the free radical pathway played a dominant role. Furthermore, the Cu/CuO-BC could maintain the degradation efficiency of TC up to 80% even after five consecutive cycles. The Cu/CuO-BC maintained high activity through redox reactions between catalytically generated active species and the cycling of metal ions (Cu+/Cu2+)
    corecore