718 research outputs found

    FDFF-Net: A Full-Scale Difference Feature Fusion Network for Change Detection in High-Resolution Remote Sensing Images

    No full text
    Deep-learning techniques have made significant advances in remote sensing change detection task. However, it remains a great challenge to detect the details of changed areas from high-resolution remote sensing images. In this study, we propose a full-scale difference feature fusion network (FDFF-Net) for change detection, which can alleviate pseudochanges and reduce the loss of change details during detection. In the encoding stage, a dense difference fusion module is proposed to effectively mine and fuse the multiple differences for each feature level between bitemporal images, leading to a substantial reduction in missed detection of change areas. Additionally, the different levels of difference features are aggregated through a full-scale skip connection, allowing the network to detect multiple changed objects with various sizes. In the decoding stage, a strip spatial attention module is designed to enhance the perception of the change areas, which improves the ability to detect detailed changes. The experiments on three change detection datasets, CDD, LEVIR-CD, and S2Looking, demonstrate that FDFF-Net outperforms the compared state-of-the-art methods and can detect more complete changes of small objects and clear contours of changed areas

    A simulation-based and data-augmented shear force inversion method for offshore platform connector

    No full text
    This study introduces a Simulation-Based and Data-Augmented method for shear force inversion to address the challenge of directly measuring shear force on connector pins in multi-module floating platforms. Stress sensors are strategically placed in adjacent areas. Extensive Finite Element simulation scenarios lead to the identification of optimal features sensitive to both force magnitude and direction. Subsequently, an Artificial Neural Network (ANN) is developed to distill the simulation data into characteristic sensor responses. Fine-tuning with physical measurements further enhances shear force inversion accuracy. Using simulated and experimental data, the method demonstrates a shear force inversion error below 3.2% and an angular inversion error under 1.4% across test conditions. This methodology provides essential load data for connector safety assessments and crucial guidelines for the assembly of multimodule floating platforms

    Safety and efficacy of iodine-125 seed strand for intraluminal brachytherapy on ureteral carcinoma

    Get PDF
    ObjectiveOur aim is to evaluate the safety and efficacy of iodine-125 seed strand for intraluminal brachytherapy on ureteral carcinoma.MethodsFrom November 2014 to November 2021, 22 patients with ureteral cancer not suitable for surgical resection were enrolled. Iodine-125 seed strand was inserted under c-arm CT and fluoroscopic guidance. The technical success rate, complications, disease control rate, and survival time were evaluated. Hydronephrosis Girignon grade and ureteral cancer sizes before and after treatment were compared.ResultsA total of 46 seed strands were successfully inserted and replaced, with a technical success rate of 100% and median procedure time of 62 min. No procedure-related death, ureteral perforation, infection, or severe bleeding occurred. Minor complications were observed in eight (36.4%) patients, and migration of seed strand was the most common complication. Six months after seed strand brachytherapy, one complete response, three partial responses, and five stable diseases were evaluated, and the disease control rate was 64.3%. The Girignon grade of hydronephrosis was significantly improved 1 to 3 months after seed strand insertion. Disease control rates were 94.4, 62.5, and 64.3% at 1-, 3-, and 6-month follow-up. Twenty patients were successfully followed up, with a mean follow-up of 18.0 ± 14.5 months. The median overall survival and progress-free survival were 24.7 and 13.0 months, respectively.ConclusionIodine-125 seed strand is safe and effective for intraluminal brachytherapy and can be used as an alternative to patients with ureteral carcinoma who are not suitable for surgical resection or systemic combined therapy

    Organic Passivation of Deep Defects in Cu(In,Ga)Se2 Film for Geometry-Simplified Compound Solar Cells

    No full text
    Diverse defects in copper indium gallium diselenide solar cells cause nonradiative recombination losses and impair device performance. Here, an organic passivation scheme for surface and grain boundary defects is reported, which employs an organic passivation agent to infiltrate the copper indium gallium diselenide thin films. A transparent conductive passivating (TCP) film is then developed by incorporating metal nanowires into the organic polymer and used in solar cells. The TCP films have a transmittance of more than 90% in the visible and nearinfrared spectra and a sheet resistance of ~10.5 Ω/sq. This leads to improvements in the open-circuit voltage and the efficiency of the organic passivated solar cells compared with control cells and paves the way for novel approaches to copper indium gallium diselenide defect passivation and possibly other compound solar cells

    Structure Optimization of Planar Nanoscale Vacuum Channel Transistor

    No full text
    Due to its unique structure, discoveries in nanoscale vacuum channel transistors (NVCTs) have demonstrated novel vacuum nanoelectronics. In this paper, the structural parameters of planar-type NVCTs were simulated, which illustrated the influence of emitter tip morphology on emission performance. Based on simulations, we successfully fabricated back-gate and side-gate NVCTs, respectively. Furthermore, the electric properties of NVCTs were investigated, showing the potential to realize the high integration of vacuum transistors

    Application of the pressure cooker technique for transarterial embolization of brain arteriovenous malformations: Factors affecting obliteration and outcomes

    Get PDF
    ObjectiveThe typical pressure cooker technique (PCT) and several modifications with similar mechanisms have been introduced to enhance the embolization of brain arteriovenous malformations (bAVMs). This study aimed to assess the effectiveness of transarterial embolization of bAVMs with the PCT.MethodFrom January 2019 to December 2021, 125 consecutive patients with bAVM managed by transarterial embolization in the prospective database on cerebral vascular diseases of a single center were retrospectively reviewed. Patient data and lesion characteristics were collected. According to the treatment strategy, the patients were assigned to the PCT group (46 patients) and conventional embolization technique (CET) group (79 patients).ResultsBaseline patient features were comparable between the two groups. After the first procedure, complete obliteration immediately was observed in 61 and 42% of patients in the PCT and CET groups, respectively. The rate was markedly elevated in the PCT group (p = 0.04). In subgroup analysis, the rate of immediate complete obliteration was starkly increased in PCT group patients with Spetzler-Martin grade I/II bAVM (86 and 53% in the PCT and CET groups, respectively; p = 0.0036). The overall complication rates were similar in the two groups (13 and 10% in the PCT and CET groups, respectively; p = 0.77). In multivariable analysis, nidus size >3 cm (OR = 8.826, 95% CI: 1.250–62.312; p = 0.03) and deep location (OR = 8.576, 95% CI: 1.480–49.690; p = 0.02) were significant factors affecting complete obliteration in the PCT group.ConclusionThe PCT may yield a higher rate of immediate complete obliteration with transarterial embolization of bAVMs, without increasing the rate of procedure-related complications

    Exploring the relationship between lactate metabolism and immunological function in colorectal cancer through genes identification and analysis

    Get PDF
    Introduction: Metabolic dysregulation is a widely acknowledged contributor for the development and tumorigenesis of colorectal cancer (CRC), highlighting the need for reliable prognostic biomarkers in this malignancy.Methods: Herein, we identified key genes relevant to CRC metabolism through a comprehensive analysis of lactate metabolism-related genes from GSEA MsigDB, employing univariate Cox regression analysis and random forest algorithms. Clinical prognostic analysis was performed following identification of three key genes, and consistent clustering enabled the classification of public datasets into three patterns with significant prognostic differences. The molecular pathways and tumor microenvironment (TME) of these patterns were then investigated through correlation analyses. Quantitative PCR was employed to quantify the mRNA expression levels of the three pivotal genes in CRC tissue. Single-cell RNA sequencing data and fluorescent multiplex immunohistochemistry were utilized to analyze relevant T cells and validate the correlation between key genes and CD4+ T cells.Results: Our analysis revealed that MPC1, COQ2, and ADAMTS13 significantly stratify the cohort into three patterns with distinct prognoses. Additionally, the immune infiltration and molecular pathways were significantly different for each pattern. Among the key genes, MPC1 and COQ2 were positively associated with good prognosis, whereas ADAMTS13 was negatively associated with good prognosis. Single-cell RNA sequencing (scRNA-seq) data illustrated that the relationship between three key genes and T cells, which was further confirmed by the results of fluorescent multiplex immunohistochemistry demonstrating a positive correlation between MPC1 and COQ2 with CD4+ T cells and a negative correlation between ADAMTS13 and CD4+ T cells.Discussion: These findings suggest that the three key lactate metabolism genes, MPC1, COQ2, and ADAMTS13, may serve as effective prognostic biomarkers and support the link between lactate metabolism and the immune microenvironment in CRC

    A Method Based on Improved Ant Colony Algorithm Feature Selection Combined With GA-SVR Model for Predicting Chlorophyll-a Concentration in Ulansuhai Lake

    No full text
    Chlorophyll-a (Chl-a) is an important parameter of water bodies, but due to the complexity of optics in water bodies, it is currently difficult to accurately predict Chl-a concentration in water bodies by traditional methods. In this paper, Sentinel-2 remote sensing images is used as the data source combined with measured data, and Ulansuhai Lake is taken as the study area. An adaptive ant colony exhaustive optimization (A-ACEO) algorithm is proposed for feature selection and combined with a novel intelligent algorithm of optimizing support vector regression (SVR) by genetic algorithm (GA) for prediction of Chl-a concentration. The ant colony optimization (ACO) algorithm is improved to select remote sensing feature bands for Chl-a concentration by introducing relevant optimization strategies. The GA-SVR model is built by optimizing SVR using GA with the selected feature bands as input, and comparing with the traditional SVR model. The simulation results show that under the same conditions, using A-ACEO algorithm to select feature bands as inputs can effectively reduce the model complexity, and improve the model prediction performance, which provides a valuable reference for monitoring Chl-a concentration in lakes

    Impact of Cuproptosis-related markers on clinical status, tumor immune microenvironment and immunotherapy in colorectal cancer: A multi-omic analysis

    No full text
    Background: Cuproptosis, a novel identified cell death form induced by copper, is characterized by aggregation of lipoylated mitochondrial enzymes and the destabilization of Fe–S cluster proteins. However, the function and potential clinical value of cuproptosis and cuproptosis-related biomarkers in colorectal cancer (CRC) remain largely unknown. Methods: A comprehensive multi-omics (transcriptomics, genomics, and single-cell transcriptome) analysis was performed for identifying the influence of 16 cuproptosis-related markers on clinical status, molecular functions and tumor microenvironment (TME) in CRC. A novel cuproptosis-related scoring system (CuproScore) based on cuproptosis-related markers was also constructed to predict the prognosis of CRC individuals, TME and the response to immunotherapy. In addition, our transcriptome cohort of 15 paired CRC tissue, tissue-array, and various assays in 4 kinds of CRC cell lines in vitro were applied for verification. Results: Cuproptosis-related markers were closely associated with both clinical prognosis and molecular functions. And the cuproptosis-related molecular phenotypes and scoring system (CuproScore) could distinguish and predict the prognosis of CRC patients, TME, and the response to immunotherapy in both public and our transcriptome cohorts. Besides, the expression, function and clinical significance of these markers were also checked and analyzed in CRC cell lines and CRC tissues in our own cohorts. Conclusions: In conclusion, we indicated that cuproptosis and CPRMs played a significant role in CRC progression and in modeling the TME. Inducing cuproptosis may be a useful tool for tumor therapy in the future
    corecore