4,125 research outputs found

    Differential magnetic field probe calibration based on symmetric de‐embedding technology

    No full text
    Abstract The de‐embedding calibration method has been proposed to achieve high‐precision calibration for a single port electric field or magnetic field probe, which can effectively eliminate the calibration ripple. However, the method's effectiveness for a four‐port calibration system has not been verified yet. In this paper, a four‐port de‐embedding calibration method with a differential magnetic field probe is proposed, and its effectiveness is proved. Two symmetric grounded coplanar waveguide transmission lines are applied in the proposed method to solve the ABCD‐matrix of the embedded part of the calibrator. The de‐embedded S‐parameter model of the four‐port calibration system for differential magnetic field probe can be obtained. The calibration results indicate that the proposed method can also reduce the calibration ripple and compensate for the attenuation caused by the calibrator. Compared with the traditional calibration method using a microstrip line calibrator, the ripples of the proposed method can be reduced by 34%. The analysis results of the frequency interval of the ripple (FIR) in different methods show that the de‐embedding method can reduce the FIRs (except around 1.2 GHz) caused by the reflection of the calibrator and retain the FIR (about 1.2 GHz) caused by the reflection of the probe itself

    CEPC Technical Design Report -- Accelerator

    No full text
    International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s

    A Secreted BBE-Like Enzyme Acting as a Drug-Binding Efflux Carrier Confers Microbial Self-Resistance to Mitomycin C

    No full text
    The berberine bridge enzyme (BBE)-like flavoproteins have attracted continuous attention for their capability to catalyze various oxidative reactions. Here we demonstrate that MitR, a secreted BBE-like enzyme, functions as a special drug-binding efflux protein evolved from quinone reductase. Moreover, this protein provides self-resistance to its hosts toward the DNA-alkylating agent mitomycin C with a distinctive strategy, featured by independently performing drug binding and efflux

    Comparisons of clinical outcomes between newly diagnosed early- and late-onset T2DM: a real-world study from the Shanghai Hospital Link Database

    No full text
    Objective: The aim of this study was to compare the differences in incident population, comorbidities, and glucose-lowering drug prescriptions between newly diagnosed patients with early-onset type 2 diabetes mellitus (T2DM) and those with late-onset T2DM to provide real-world evidence for clinical practice. Methods: This study was based on the Shanghai Hospital Link Database (SHLD). Anonymized electronic medical record (EHR) data from 2013 to 2021 were included in this study. Newly diagnosed patients with T2DM were defined as those without related diagnostic records or glucose-lowering medicine prescriptions in the past 3 years. Early-onset T2DM was defined as patients who were aged 18–40 years old at the first visit for T2DM to represent those who were born after the 1980s. And late-onset T2DM was defined as those aged 65–80 years old to represent those who were born in a relatively undeveloped period. Descriptive statistical analyses were performed to describe their incidence number, glucose-lowering drug prescriptions, and comorbidities at the first visit to the hospital between two T2DM groups. Results: There were a total of 35,457 newly diagnosed patients with early-onset T2DM and 149,108 newly diagnosed patients with late-onset T2DM included in this study. Patients with late-onset T2DM constituted the majority and their number increased by 2.5% on average by years, while the number of patients with early-onset T2DM remained stable each year. Compared with late-onset T2DM patients, more early-onset T2DM patients had dyslipidemia at the first visit to hospitals (9.5% vs 7.7%, P < 0.01) despite their significant age differences. Patients with early-onset T2DM were more likely to use metformin (74.8% vs 46.5, P < 0.01), dipeptidyl peptidase-4 inhibitors (DDP-4i) (16.7% vs 11.2%, P < 0.01), thiazolidinediones (TZD) (14.9% vs 8.4%, P < 0.01), sodium glucose cotransporter 2 inhibitors (SGLT2-i) (0.8% vs 0.3%, P < 0.01), and glucagon-like peptide 1 receptor agonists (GLP-1 RA) (3.7% vs 0.5%, P < 0.01) at their first visit to the hospital. Conclusions: Different characteristics were observed between patients with early-onset T2DM and those with late-onset T2DM. Compared with patients with late-onset T2DM, those with early-onset T2DM were more prone to dyslipidemia and had novel organ-protective drugs prescribed

    CEPC Technical Design Report -- Accelerator

    No full text
    International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s

    CEPC Technical Design Report -- Accelerator

    No full text
    International audienceThe Circular Electron Positron Collider (CEPC) is a large scientific project initiated and hosted by China, fostered through extensive collaboration with international partners. The complex comprises four accelerators: a 30 GeV Linac, a 1.1 GeV Damping Ring, a Booster capable of achieving energies up to 180 GeV, and a Collider operating at varying energy modes (Z, W, H, and ttbar). The Linac and Damping Ring are situated on the surface, while the Booster and Collider are housed in a 100 km circumference underground tunnel, strategically accommodating future expansion with provisions for a Super Proton Proton Collider (SPPC). The CEPC primarily serves as a Higgs factory. In its baseline design with synchrotron radiation (SR) power of 30 MW per beam, it can achieve a luminosity of 5e34 /cm^2/s^1, resulting in an integrated luminosity of 13 /ab for two interaction points over a decade, producing 2.6 million Higgs bosons. Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons, facilitating precise measurements of Higgs coupling at sub-percent levels, exceeding the precision expected from the HL-LHC by an order of magnitude. This Technical Design Report (TDR) follows the Preliminary Conceptual Design Report (Pre-CDR, 2015) and the Conceptual Design Report (CDR, 2018), comprehensively detailing the machine's layout and performance, physical design and analysis, technical systems design, R&D and prototyping efforts, and associated civil engineering aspects. Additionally, it includes a cost estimate and a preliminary construction timeline, establishing a framework for forthcoming engineering design phase and site selection procedures. Construction is anticipated to begin around 2027-2028, pending government approval, with an estimated duration of 8 years. The commencement of experiments could potentially initiate in the mid-2030s

    Cu–Zn Cation Disorder in Kesterite Cu2ZnSn(SxSe1–x)4 Solar Cells

    Get PDF
    Cu–Zn cation disorder plays a vital and controversial role in kesterite CuZnSn(S1–xSex)4 solar cells. We demonstrate using density functional theory and nonadiabatic molecular dynamics simulations that the Cu–Zn disorder across different planes (i.e., Cu–Sn and Cu–Zn planes) is significantly more detrimental to device performance than the case when disorder is confined only to the Cu–Zn planes. The main reason is that different plane disorder induces a significant elongation of Sn–S/Se bond lengths, leading to a downshift of the conduction band minimum, decreasing the band gap, and reducing the optical absorption. Moreover, Cu–Zn disorder across different planes accelerates nonradiative electron–hole recombination and decreases charge carrier lifetime due to the reduction of the band gap and enhanced electron-vibrational interaction. Our results provide a theoretical explanation for the influence of Cu–Zn disorder on material performance and offer valuable insight into the design of more efficient solar cells

    Cu–Zn Cation Disorder in Kesterite Cu<sub>2</sub>ZnSn(S<sub><i>x</i></sub>Se<sub>1–<i>x</i></sub>)<sub>4</sub> Solar Cells

    No full text
    Cu–Zn cation disorder plays a vital and controversial role in kesterite CuZnSn(S1–xSex)4 solar cells. We demonstrate using density functional theory and nonadiabatic molecular dynamics simulations that the Cu–Zn disorder across different planes (i.e., Cu–Sn and Cu–Zn planes) is significantly more detrimental to device performance than the case when disorder is confined only to the Cu–Zn planes. The main reason is that different plane disorder induces a significant elongation of Sn–S/Se bond lengths, leading to a downshift of the conduction band minimum, decreasing the band gap, and reducing the optical absorption. Moreover, Cu–Zn disorder across different planes accelerates nonradiative electron–hole recombination and decreases charge carrier lifetime due to the reduction of the band gap and enhanced electron-vibrational interaction. Our results provide a theoretical explanation for the influence of Cu–Zn disorder on material performance and offer valuable insight into the design of more efficient solar cells

    How does global value chain embeddedness affect environmental pollution? Evidence from Chinese enterprises

    No full text
    This study investigates the impact of global value chain (GVC) embeddedness on corporate polluting behavior at the micro level. Although existing studies have examined the environmental effects of GVCs, little attention has been paid to the underlying mechanisms through which GVCs affect corporate pollution. To fill this knowledge gap, this study uses Chinese industrial enterprise data over the period 2000–2013 as the research setting to examine the impact of embedded GVCs on corporate polluting behavior. We find that the embeddedness of enterprises in a GVC reduces SO2 emissions. The reduction effect of GVC embeddedness is transmitted through scale and technology effects but not through the composition effect. Heterogeneity analysis indicates that such a reduction effect on corporate pollution is more pronounced in general trading enterprises, domestic enterprises, and enterprises located in regions with high environmental regulations. Further analysis suggests that GVC embeddedness reduces SO2 emissions, mainly through front-end pollution control, by reducing the use of fossil fuels rather than back-end governance. Our findings have important practical implications for GVC participation and sustainable development in emerging economies.</p

    Borneol-modified docetaxel plus tetrandrine micelles for treatment of drug-resistant brain glioma

    No full text
    Glioma is the most common and deadly primary malignant tumor in adults. Treatment outcomes are ungratified due to the presence of blood–brain barrier (BBB), glioma stem cells (GSCs) and multidrug resistance (MDR). Docetaxel (DTX) is considered as a potential drug for the treatment of brain tumor, but its effectiveness is limited by its low bioavailability and drug resistance. Tetrandrine (TET) reverses the resistance of tumor cells to chemotherapy drugs. Borneol (BO) modified in micelles has been shown to promote DTX plus TET to cross the BBB, allowing the drug to better act on tumors. Therefore, we constructed BO-modified DTX plus TET micelles to inhibit chemotherapeutic drug resistance. Provide a new treatment method for drug-resistant brain gliomas. In this study, BO-modified DTX plus TET micelles were prepared by thin film dispersion method, their physicochemical properties were characterized. Its targeting ability was investigated. The therapeutic effect on GSCs was investigated by in vivo and in vitro experiments. The BO-modified DTX plus TET micelles were successfully constructed by thin film dispersion method, and the micelles showed good stability. The results showed that targeting micelles increased bEnd.3 uptake and helped drugs cross the BBB in vitro. And we also found that targeting micelles could inhibit cell proliferation, promote cell apoptosis and inhibit the expression of drug-resistant protein, thus provide a new treatment method for GSCs in vitro and in vivo. BO-modified DTX plus TET micelles may provide a new treatment method for drug-resistant brain gliomas.</p
    • 

    corecore