222 research outputs found

    A multiparameter radiomic model for accurate prognostic prediction of glioma

    No full text
    Abstract An accurate prediction of prognosis is important for clinical treatments of glioma. In this study, a multiparameter radiomic model is proposed for accurate prognostic prediction of glioma. Three kinds of region of interest were extracted from preoperative postcontrast T1‐weighted images and T2 fluid‐attenuated inversion recovery images acquired from 140 glioma patients. Radiomics score (Radscore) was calculated and the conventional image features and clinical molecular characteristics that may be related to progression‐free survival (PFS) were evaluated. Five uniparameter and various combinations of biparameter and multiparameter models based on above characteristics were built. The performance of these models was evaluated by concordance index (C index), and the nomogram of the multiparameter radiomic model was constructed. The results show that the proposed multiparameter radiomic model has a better prediction performance than other models. In the training and validation sets, the calibration curves of the multiparameter radiomic model for the 1‐, 2‐, and 3‐year PFS probability demonstrate a high consistence between predictions and observations. In conclusion, this study demonstrates that the multiparameter radiomic model based on Radscore, conventional image features and clinical molecular characteristics can improve the prediction accuracy of glioma prognosis, which could be informative for individualized treatments

    Comprehensive analysis of transcriptomics and metabolomics to understand tail-suspension-induced myocardial injury in rat

    Get PDF
    Background/AimsThe effect and underlying mechanism of microgravity on myocardium still poorly understood. The present study aims to reveal the effect and underlying mechanism of tail-suspension-induced microgravity on myocardium of rats.MethodsTail-suspension was conducted to simulate microgravity in rats. Echocardiography assay was used to detect cardiac function. The cardiac weight index was measured. Hematoxylin and eosin (HE) staining and transmission electron microscopy assay were conducted to observe the structure of the tissues. RNA sequencing and non-targeted metabolomics was employed to obtain transcriptome and metabolic signatures of heart from tail-suspension-induced microgravity and control rats.ResultsMicrogravity induced myocardial atrophy and decreased cardiac function in rats. Structure and ultrastructure changes were observed in myocardium of rats stimulated with microgravity. RNA sequencing for protein coding genes was performed and identified a total of 605 genes were differentially expressed in myocardium of rats with tail suspension, with 250 upregulated and 355 downregulated (P < 0.05 and | log2fold change| > 1). A total of 55 differentially expressed metabolites were identified between the two groups (VIP > 1 and P < 0.05) by the metabolic profiles of heart tissues from microgravity groups and control. Several major pathways altered aberrantly at both transcriptional and metabolic levels, including FoxO signaling pathway, Amyotrophic lateral sclerosis, Histidine metabolism, Arginine and proline metabolism.ConclusionMicrogravity can induce myocardial atrophy and decreases cardiac function in rats and the molecular alterations at the metabolic and transcriptomic levels was observed, which indicated major altered pathways in rats with tail suspension. The differentially expressed genes and metabolites-involved in the pathways maybe potential biomarkers for microgravity-induced myocardial atrophy

    Costs and health benefits of the rural energy transition to carbon neutrality in China

    Get PDF
    Abstract The rural energy transition is critical in China’s efforts to achieve carbon neutrality and improve air quality. However, the costs and health benefits associated with the transition to carbon neutrality remain unclear. Here we explore the cost-effective transition pathways and air quality-related health impacts using an integrated energy-air quality-health modeling framework. We find that decarbonizing rural cooking and heating would triple contemporary energy consumption from 2014 to 2060, considerably reducing energy poverty nationwide. By 2060, electric cooking ranges and air-to-air heat pumps should be widely integrated, costing an additional 13 billion USD nationally in transformation costs, with ~40% concentrated in Shandong, Heilongjiang, Shanxi and Hebei provinces. Rural residential decarbonization would remarkably improve air quality in northern China, yielding substantial health co-benefits. Notably, monetized health benefits in most provinces are projected to offset transformation costs, except for certain relatively lower-development southwestern provinces, implying more financial support for rural residents in these areas will be needed

    Structural basis for a conserved neutralization epitope on the receptor-binding domain of SARS-CoV-2.

    No full text
    Antibody-mediated immunity plays a crucial role in protection against SARS-CoV-2 infection. We isolated a panel of neutralizing anti-receptor-binding domain (RBD) antibodies elicited upon natural infection and vaccination and showed that they recognize an immunogenic patch on the internal surface of the core RBD, which faces inwards and is hidden in the "down" state. These antibodies broadly neutralize wild type (Wuhan-Hu-1) SARS-CoV-2, Beta and Delta variants and some are effective against other sarbecoviruses. We observed a continuum of partially overlapping antibody epitopes from lower to upper part of the inner face of the RBD and some antibodies extend towards the receptor-binding motif. The majority of antibodies are substantially compromised by three mutational hotspots (S371L/F, S373P and S375F) in the lower part of the Omicron BA.1, BA.2 and BA.4/5 RBD. By contrast, antibody IY-2A induces a partial unfolding of this variable region and interacts with a conserved conformational epitope to tolerate all antigenic variations and neutralize diverse sarbecoviruses as well. This finding establishes that antibody recognition is not limited to the normal surface structures on the RBD. In conclusion, the delineation of functionally and structurally conserved RBD epitopes highlights potential vaccine and therapeutic candidates for COVID-19

    Using single nucleotide polymorphism array for prenatal diagnosis in a large multicenter study in Southern China

    No full text
    Abstract Numerous studies have evaluated the use of single nucleotide polymorphism array (SNP-array) in prenatal diagnostics, but very few have evaluated its application under different risk conditions. Here, SNP-array was used for the retrospective analysis of 8386 pregnancies and the cases were categorized into seven groups. Pathogenic copy number variations (pCNVs) were found in 699 (8.3%, 699/8386) cases. Among the seven different risk factor groups, the non-invasive prenatal testing-positive group had the highest pCNVs rate (35.3%), followed by the abnormal ultrasound structure group (12.8%), and then the chromosomal abnormalities in the couples group (9.5%). Notably the adverse pregnancy history group presented with the lowest pCNVs rate (2.8%). Further evaluation of the 1495 cases with ultrasound abnormalities revealed that the highest pCNV rates were recorded in those cases with multiple system structure abnormalities (22.6%), followed by the groups with skeletal system (11.6%) and urinary system abnormalities (11.2%). A total of 3424 fetuses with ultrasonic soft markers were classified as having one, two, or three ultrasonic soft markers. The different pCNV rates in the three groups were statistically significant. There was little correlation between pCNVs and a previous history of adverse pregnancy outcomes, suggesting that genetic screening under these conditions should be evaluated on a case-by-case basis

    Hydrogen-assisted growth of one-dimensional tellurium nanoribbons with unprecedented high mobility

    No full text
    High-mobility van der Waals ambipolar semiconductors are promising in logic and reconfigurable circuits, integrated optoelectronic circuits, due to the excellent gate-controlled capability and effectively tunability of major charge carriers by electrostatic field. Controllable growth of high-quality ambipolar semiconductors with high mobility and stability is highly glamorous and indispensable for further research. Here, we demonstrate a straightforward space-confined chemical vapor deposition (CVD) method to synthesize high-quality quasi-one-dimensional (1D) tellurium (Te) nanoribbons (NRs). By introducing H2 into the gas flow, endothermic compound H2Te was generated from the reaction of liquid Te with H2, and consequently decomposed into elemental Te at low temperature. Further, the Te NRs have been utilized for in-situ fabrication of field-effect transistors (FETs) without transferring process. Ambipolar features are achieved using nickel (Ni) as an ohmic contact. More importantly, the mobilities of the Te NR transistor for hole/electron are as high as 1755/28.6 cm2V−1s−1 and 4024/278 cm2V−1s−1 at room temperature and under a temperature below 20 K, respectively. Our findings confirm the novel strategy for synthesizing 1D elemental semiconductors and their applications with ambipolar behaviors.Agency for Science, Technology and Research (A*STAR)National Research Foundation (NRF)Submitted/Accepted versionThe authors gratefully acknowledge financial support by National Key Research and Development Program of China (2020YFB2008501), the National Natural Science Foundation of China (61974120 and 11904289), Key Research and Development Program of Shaanxi Province (2020ZDLGY04-08, 2020GXLH-Z-027, and 2021JZ-43), the Natural Science Foundation of Shaanxi Province (2023-JC-YB-495 and 2022JQ-659), the Key Program for International Science and Technology Cooperation Projects of Shaanxi Province (2018KWZ-08), the Natural Science Foundation of Ningbo (202003N4003), the Fundamental Research Funds for the Central Universities (3102019PY004, 31020190QD010, and 3102019JC004), the start-up funds from Northwestern Polytechnical University, and open research fund of the State Key Laboratory of Organic Electronics and Information Displays. This work was also supported by National Research Foundation–Competitive Research Program NRF-CRP22-2019-0007 and NRF-CRP21-2018-0007, and supported by A*STAR under its AME IRG Grant (Project No. A2083c0052)

    Transcriptome analysis of the Bactrian camel (Camelus bactrianus) reveals candidate genes affecting milk production traits

    No full text
    Abstract Background Milk production traits are complex traits with vital economic importance in the camel industry. However, the genetic mechanisms regulating milk production traits in camels remain poorly understood. Therefore, we aimed to identify candidate genes and metabolic pathways that affect milk production traits in Bactrian camels. Methods We classified camels (fourth parity) as low- or high-yield, examined pregnant camels using B-mode ultrasonography, observed the microscopic changes in the mammary gland using hematoxylin and eosin (HE) staining, and used RNA sequencing to identify differentially expressed genes (DEGs) and pathways. Results The average standard milk yield over the 300 days during parity was recorded as 470.18 ± 9.75 and 978.34 ± 3.80 kg in low- and high-performance camels, respectively. Nine female Junggar Bactrian camels were subjected to transcriptome sequencing, and 609 and 393 DEGs were identified in the low-yield vs. high-yield (WDL vs. WGH) and pregnancy versus colostrum period (RSQ vs. CRQ) comparison groups, respectively. The DEGs were compared with genes associated with milk production traits in the Animal Quantitative Trait Loci database and in Alashan Bactrian camels, and 65 and 46 overlapping candidate genes were obtained, respectively. Functional enrichment and protein–protein interaction network analyses of the DEGs and candidate genes were conducted. After comparing our results with those of other livestock studies, we identified 16 signaling pathways and 27 core candidate genes associated with maternal parturition, estrogen regulation, initiation of lactation, and milk production traits. The pathways suggest that emerged milk production involves the regulation of multiple complex metabolic and cellular developmental processes in camels. Finally, the RNA sequencing results were validated using quantitative real-time PCR; the 15 selected genes exhibited consistent expression changes. Conclusions This study identified DEGs and metabolic pathways affecting maternal parturition and milk production traits. The results provides a theoretical foundation for further research on the molecular mechanism of genes related to milk production traits in camels. Furthermore, these findings will help improve breeding strategies to achieve the desired milk yield in camels. Graphical Abstrac

    Knockout of PERK protects rat MĂŒller glial cells against OGD-induced endoplasmic reticulum stress-related apoptosis

    No full text
    Abstract Background The pathological basis for many retinal diseases, retinal ischemia is also one of the most common causes of visual impairment. Numerous ocular diseases have been linked to Endoplasmic reticulum(ER)stress. However, there is still no clear understanding of the relationship between ER stress and MĂŒller glial cells during retinal ischemia and hypoxia. This study examined the effects of ER stress on autophagy and apoptosis-related proteins, as well as the microtubule-related protein tau in rMC-1 cells. Methods rMC-1 cells were cultured in vitro. RT-PCR、immunofluorescence and Western blotting revealed the expression levels of associated mRNAs and proteins, and the CCK-8 and flow cytometry assays detected cell apoptosis. Results The results showed that under OGD(Oxygen-glucose deprivation) conditions, the number of rMC-1 cells was decreased, the PERK/eIF2a pathway was activated, and the expressions of p-tau, LC3、Beclin1 and Caspase-12 proteins were increased. After the PERK knockout, the expression of the above proteins was decreased, and the apoptosis was also decreased. Conclusion According to the findings of this study, specific downregulation of PERK expression had an anti-apoptotic effect on OGD-conditioned rMC-1 cells. There is a possibility that this is one of the mechanisms of MG cell apoptosis during retinal ischemic injury

    Table_5_Comprehensive analysis of transcriptomics and metabolomics to understand tail-suspension-induced myocardial injury in rat.XLS

    No full text
    Background/AimsThe effect and underlying mechanism of microgravity on myocardium still poorly understood. The present study aims to reveal the effect and underlying mechanism of tail-suspension-induced microgravity on myocardium of rats.MethodsTail-suspension was conducted to simulate microgravity in rats. Echocardiography assay was used to detect cardiac function. The cardiac weight index was measured. Hematoxylin and eosin (HE) staining and transmission electron microscopy assay were conducted to observe the structure of the tissues. RNA sequencing and non-targeted metabolomics was employed to obtain transcriptome and metabolic signatures of heart from tail-suspension-induced microgravity and control rats.ResultsMicrogravity induced myocardial atrophy and decreased cardiac function in rats. Structure and ultrastructure changes were observed in myocardium of rats stimulated with microgravity. RNA sequencing for protein coding genes was performed and identified a total of 605 genes were differentially expressed in myocardium of rats with tail suspension, with 250 upregulated and 355 downregulated (P 1). A total of 55 differentially expressed metabolites were identified between the two groups (VIP > 1 and P ConclusionMicrogravity can induce myocardial atrophy and decreases cardiac function in rats and the molecular alterations at the metabolic and transcriptomic levels was observed, which indicated major altered pathways in rats with tail suspension. The differentially expressed genes and metabolites-involved in the pathways maybe potential biomarkers for microgravity-induced myocardial atrophy.</p

    Car Ownership Behavior Model Considering Nonlinear Impacts of Multi-Scale Built Environment Characteristics

    No full text
    To explore the nonlinear influence of a multi-scale built environment on residents’ car ownership behavior, combined with the data set of residents’ individual information and travel-related data from the China Labor Force Dynamic Survey report, eight variables are selected to describe the built environment from multiple scales. The gradient-boosting iterative decision tree model including individual family attributes and neighborhood-scale and city-scale built-environment attributes is constructed. The results show that the individual family attributes have the greatest cumulative impact on car ownership behavior (46.3%). The built environment based on neighborhood scale and city scale also has a significant impact on residents’ car ownership behavior, these being 33.94% and 19.76%, respectively. The distance to the city center at the neighborhood scale is positive correlated with car ownership. The number of buses per 10,000 people and road area per capita in the city scale are also positive correlated with car ownership. Therefore, in order to slow down the increase in car ownership, the built environment can be optimized and adjusted at neighborhood scale and city scale
    • 

    corecore