26,675 research outputs found

    Scottish academic publications implementing an effective networked service (SAPIENS) project

    Get PDF
    This article describes the aims and continuing progress of the Scottish Academic Periodicals Implementing an Effective Networked Service (SAPIENS) project which has been running at the University of Strathclyde's Centre for Digital Library Research since September 2001. Initially funded for two years, the project has been extended until October 2004. The rationale behind SAPIENS is the concern that small Scottish publishers, operating on limited budgets, are in danger of finding themselves marginalised in the modern information environment. The project's primary objectives are to explore the viability of, and launch, an electronic publishing service to assist small-scale Scottish publishers of academic and cultural periodicals to publish online. It has achieved these aims by implementing a demonstration service which is gradually moving into an operational mode, delivering current journals

    Fire

    Get PDF

    Low-frequency radio navigation system

    Get PDF
    A method of continuous wave navigation using four transmitters operating at sufficiently low frequencies to assure essentially pure groundwave operation is described. The transmitters are keyed to transmit constant bursts (1/4 sec) in a time-multiplexed pattern with phase modulation of at least one transmitter for identification of the transmitters and with the ability to identify the absolute phase of the modulated transmitter and the ability to modulate low rate data for transmission. The transmitters are optimally positioned to provide groundwave coverage over a service region of about 50 by 50 km for the frequencies selected in the range of 200 to 500 kHz, but their locations are not critical because of the beneficial effect of overdetermination of position of a receiver made possible by the fourth transmitter. Four frequencies are used, at least two of which are selected to provide optimal resolution. All transmitters are synchronized to an average phase as received by a monitor receiver

    Engineering novel complement activity into a pulmonary surfactant protein

    Get PDF
    Complement neutralizes invading pathogens, stimulates inflammatory and adaptive immune responses, and targets non- or altered-self structures for clearance. In the classical and lectin activation pathways, it is initiated when complexes composed of separate recognition and activation subcomponents bind to a pathogen surface. Despite its apparent complexity, recognition-mediated activation has evolved independently in three separate protein families, C1q, mannose-binding lectins (MBLs), and serum ficolins. Although unrelated, all have bouquet-like architectures and associate with complement-specific serine proteases: MBLs and ficolins with MBL-associated serine protease-2 (MASP-2) and C1q with C1r and C1s. To examine the structural requirements for complement activation, we have created a number of novel recombinant rat MBLs in which the position and orientation of the MASP-binding sites have been changed. We have also engineered MASP binding into a pulmonary surfactant protein (SP-A), which has the same domain structure and architecture as MBL but lacks any intrinsic complement activity. The data reveal that complement activity is remarkably tolerant to changes in the size and orientation of the collagenous stalks of MBL, implying considerable rotational and conformational flexibility in unbound MBL. Furthermore, novel complement activity is introduced concurrently with MASP binding in SP-A but is uncontrolled and occurs even in the absence of a carbohydrate target. Thus, the active rather than the zymogen state is default in lectin·MASP complexes and must be inhibited through additional regions in circulating MBLs until triggered by pathogen recognition
    • …
    corecore