415 research outputs found

    Elasticity effects on the stability of growing films

    Full text link
    It is shown how the combination of atomic deposition and nonlinear diffusion may lead, below a critical temperature, to the growth of nonuniform layers on a substrate. The dynamics of such a system is of the Cahn-Hilliard type, supplemented by reaction terms representing adsorption-desorption processes. The instability of uniform layers leads to the formation of nanostructures which correspond to regular spatial variations of substrate coverage. Since coverage inhomogeneities generate internal stresses, the coupling between coverage evolution and film elasticity fields is also considered, for film thickness below the critical thickness for misfit dislocation nucleation. It is shown that this coupling is destabilizing and favors nanostructure formation. It also favors square planforms which could compete, and even dominate over the haxagonal or stripe nanostructures induced by coverage dynamics alon

    Pattern formation and nonlocal logistic growth

    Full text link
    Logistic growth process with nonlocal interactions is considered in one dimension. Spontaneous breakdown of translational invariance is shown to take place at some parameter region, and the bifurcation regime is identified for short and long range interactions. Domain walls between regions of different order parameter are expressed as soliton solutions of the reduced dynamics for nearest neighbor interactions. The analytic results are confirmed by numerical simulations

    Convective and Absolute Instabilities in the Subcritical Ginzburg-Landau Equation

    Get PDF
    We study the nature of the instability of the homogeneous steady states of the subcritical Ginzburg-Landau equation in the presence of group velocity. The shift of the absolute instability threshold of the trivial steady state, induced by the destabilizing cubic nonlinearities, is confirmed by the numerical analysis of the evolution of its perturbations. It is also shown that the dynamics of these perturbations is such that finite size effects may suppress the transition from convective to absolute instability. Finally, we analyze the instability of the subcritical middle branch of steady states, and show, analytically and numerically, that this branch may be convectively unstable for sufficiently high values of the group velocity.Comment: 13 pages, 10 figures (fig1.ps, fig2.eps, fig3.ps, fog4a.ps, fig 4b.ps, fig5.ps, fig6.eps, fig7a.ps, fig7b.ps, fig8.p

    New results on twinlike models

    Full text link
    In this work we study the presence of kinks in models described by a single real scalar field in bidimensional spacetime. We work within the first-order framework, and we show how to write first-order differential equations that solve the equations of motion. The first-order equations strongly simplify the study of linear stability, which is implemented on general grounds. They also lead to a direct investigation of twinlike theories, which is used to introduce a family of models that support the same defect structure, with the very same energy density and linear stability.Comment: 6 pages, 1 figur

    Wave-unlocking transition in resonantly coupled complex Ginzburg-Landau equations

    Full text link
    We study the effect of spatial frequency-forcing on standing-wave solutions of coupled complex Ginzburg-Landau equations. The model considered describes several situations of nonlinear counterpropagating waves and also of the dynamics of polarized light waves. We show that forcing introduces spatial modulations on standing waves which remain frequency locked with a forcing-independent frequency. For forcing above a threshold the modulated standing waves unlock, bifurcating into a temporally periodic state. Below the threshold the system presents a kind of excitability.Comment: 4 pages, including 4 postscript figures. To appear in Physical Review Letters (1996). This paper and related material can be found at http://formentor.uib.es/Nonlinear

    Patterns arising from the interaction between scalar and vectorial instabilities in two-photon resonant Kerr cavities

    Full text link
    We study pattern formation associated with the polarization degree of freedom of the electric field amplitude in a mean field model describing a nonlinear Kerr medium close to a two-photon resonance, placed inside a ring cavity with flat mirrors and driven by a coherent x^\hat x-polarized plane-wave field. In the self-focusing case, for negative detunings the pattern arises naturally from a codimension two bifurcation. For a critical value of the field intensity there are two wave numbers that become unstable simultaneously, corresponding to two Turing-like instabilities. Considered alone, one of the instabilities would originate a linearly polarized hexagonal pattern whereas the other instability is of pure vectorial origin and would give rise to an elliptically polarized stripe pattern. We show that the competition between the two wavenumbers can originate different structures, being the detuning a natural selection parameter.Comment: 21 pages, 6 figures. http://www.imedea.uib.es/PhysDep

    Fluctuations impact on a pattern-forming model of population dynamics with non-local interactions

    Get PDF
    A model of interacting random walkers is presented and shown to give rise to patterns consisting in periodic arrangements of fluctuating particle clusters. The model represents biological individuals that die or reproduce at rates depending on the number of neighbors within a given distance. We evaluate the importance of the discrete and fluctuating character of this particle model on the pattern forming process. To this end, a deterministic mean-field description, including a linear stability and a weakly nonlinear analysis, is given and compared with the particle model. The deterministic approach is shown to reproduce some of the features of the discrete description, in particular, the existence of a finite-wavelength instability. Stochasticity in the particle dynamics, however, has strong effects in other important aspects such as the parameter values at which pattern formation occurs, or the nature of the homogeneous phase.Comment: 17 pages, 8 figures, elsart style; To appear in Physica

    Diffusion-induced spontaneous pattern formation on gelation surfaces

    Full text link
    Although the pattern formation on polymer gels has been considered as a result of the mechanical instability due to the volume phase transition, we found a macroscopic surface pattern formation not caused by the mechanical instability. It develops on gelation surfaces, and we consider the reaction-diffusion dynamics mainly induces a surface instability during polymerization. Random and straight stripe patterns were observed, depending on gelation conditions. We found the scaling relation between the characteristic wavelength and the gelation time. This scaling is consistent with the reaction-diffusion dynamics and would be a first step to reveal the gelation pattern formation dynamics.Comment: 7 pages, 4 figure

    Theory for the spatiotemporal dynamics of domain walls close to a nonequilibrium Ising-Bloch transition

    Get PDF
    © 2015 American Physical Society. We derive a generic model for the interaction of domain walls close to a nonequilibrium-Bloch transition. The universal scenario predicted by the model includes stationary Ising and Bloch localized structures (dissipative solitons), as well as drifting and oscillating Bloch structures. Our theory also explains the behavior of Bloch walls during a collision. The results are confirmed by numerical simulations of the Ginzburg-Landau equation forced at twice its natural frequency and are in agreement with previous observations in several physical systems.Peer Reviewe
    • …
    corecore