578 research outputs found

    Systems solutions by lactic acid bacteria: from paradigms to practice

    Get PDF
    Lactic acid bacteria are among the powerhouses of the food industry, colonize the surfaces of plants and animals, and contribute to our health and well-being. The genomic characterization of LAB has rocketed and presently over 100 complete or nearly complete genomes are available, many of which serve as scientific paradigms. Moreover, functional and comparative metagenomic studies are taking off and provide a wealth of insight in the activity of lactic acid bacteria used in a variety of applications, ranging from starters in complex fermentations to their marketing as probiotics. In this new era of high throughput analysis, biology has become big science. Hence, there is a need to systematically store the generated information, apply this in an intelligent way, and provide modalities for constructing self-learning systems that can be used for future improvements. This review addresses these systems solutions with a state of the art overview of the present paradigms that relate to the use of lactic acid bacteria in industrial applications. Moreover, an outlook is presented of the future developments that include the transition into practice as well as the use of lactic acid bacteria in synthetic biology and other next generation applications

    Infant gut microbiota restoration : state of the art

    Get PDF
    The gut microbiota has a central role in the programming of the host's metabolism and immune function, with both immediate and long-term health consequences. Recent years have witnessed an accumulation of understanding of the process of the colonization and development of the gut microbiota in infants. The natural gut microbiota colonization during birth is frequently disrupted due to C-section birth or intrapartum or postpartum antibiotic exposure, and consequently aberrant gut microbiota development is common. On a positive note, research has shown that restoration of normal gut microbiota development is feasible. We discuss here the current understanding of the infant microbiota, provide an overview of the sources of disturbances, and critically evaluate the evidence on early life gut microbiota restoration for improved health outcomes by analyzing published data from infant gut microbiota restoration studies.Peer reviewe

    Controlled overproduction of proteins by lactic acid bacteria

    Get PDF
    Lactic acid bacteria are widely used in industrial food fermentations, contributing to flavour, texture and preservation of the fermented products. Here we describe recent advances in the development of controlled gene expression systems, which allow the regulated overproduction of any desirable protein by lactic acid bacteria. Some systems benefit from the fact that the expression vectors, marker genes and inducing factors can be used directly in food applications since they are all derived from food-grade lactic acid bacteria. These systems have also been employed for the development of autolytic bacteria, suitable for various industrial applications.

    Intrinsic dietary fibers and the gut microbiome : Rediscovering the benefits of the plant cell matrix for human health

    Get PDF
    Dietary fibers contribute to structure and storage reserves of plant foods and fundamentally impact human health, partly by involving the intestinal microbiota, notably in the colon. Considerable attention has been given to unraveling the interaction between fiber type and gut microbiota utilization, focusing mainly on single, purified fibers. Studying these fibers in isolation might give us insights into specific fiber effects, but neglects how dietary fibers are consumed daily and impact our digestive tract: as intrinsic structures that include the cell matrix and content of plant tissues. Like our ancestors we consume fibers that are entangled in a complex network of plants cell walls that further encapsulate and shield intra-cellular fibers, such as fructans and other components from immediate breakdown. Hence, the physiological behavior and consequent microbial breakdown of these intrinsic fibers differs from that of single, purified fibers, potentially entailing unexplored health effects. In this mini-review we explain the difference between intrinsic and isolated fibers and discuss their differential impact on digestion. Subsequently, we elaborate on how food processing influences intrinsic fiber structure and summarize available human intervention studies that used intrinsic fibers to assess gut microbiota modulation and related health outcomes. Finally, we explore current research gaps and consequences of the intrinsic plant tissue structure for future research. We postulate that instead of further processing our already (extensively) processed foods to create new products, we should minimize this processing and exploit the intrinsic health benefits that are associated with the original cell matrix of plant tissues.Peer reviewe

    Sucar Coating the Envelope : Glycoconjucates for Microbe-Host Crosstalk

    Get PDF
    Tremendous progress has been made on mapping the mainly bacterial members of the human intestinal microbiota. Knowledge on what is out there, or rather what is inside, needs to be complemented with insight on how these bacteria interact with their biotic environment. Bacterial glycoconjugates, that is, the collection of all glycan-modified molecules, are ideal modulators of such interactions. Their enormous versatility and diversity results in a species-specific glycan barcode, providing a range of ligands for host interaction. Recent reports on the functional importance of glycosylation of important bacterial ligands in beneficial and pathogenic species underpin this. Glycoconjugates, and glycoproteins in particular, are an underappreciated, potentially crucial, factor in understanding bacteria-host interactions of old friends and foes.Peer reviewe

    Variation of mucin adhesion, cell surface characteristics, and molecular mechanisms among Lactobacillus plantarum isolated from different habitats

    Get PDF
    The adhesion ability to mucin varied greatly among 18 Lactobacillus plantarum isolates depending on their isolation habitats. Such ability remained at high level even though they were sequentially exposed to the gastrointestinal (GI) stresses. The majority of L. plantarum isolated from shrimp intestine and about half of food isolates exhibited adhesion ability (51.06-55.04%) about the same as the well-known adhesive L. plantarum 299v. Interestingly, five infant isolates of CIF17A2, CIF17A4, CIF17A5, CIF17AN2, and CIF17AN8 exhibited extremely high adhesion ranging from 62.69 to 72.06%. Such highly adhesive property correlating to distinctively high cell surface hydrophobicity was significantly weaken after pretreatment with LiCl and guanidine-HCl confirming the entailment of protein moiety. Regarding the draft genome information, all molecular structures of major cell wall-anchored proteins involved in the adhesion based on L. plantarum WCSF1, including lp_0964, lp_1643, lp_3114, lp_2486, lp_3127, and lp_3059 orthologues were detected in all isolates. Exceptionally, the gene-trait matching between yeast agglutination assay and the relevant mannose-specific adhesin (lp_1229) encoding gene confirmed the Msa absence in five infant isolates expressed distinctively high adhesion. Interestingly, the predicted flagellin encoding genes (fliC) firstly revealed in lp_1643, lp_2486, and lp_3114 orthologues may potentially contribute to such highly adhesive property of these isolates.Peer reviewe

    Electron transport chains of lactic acid bacteria - walking on crutches is part of their lifestyle

    Get PDF
    A variety of lactic acid bacteria contain rudimentary electron transport chains that can be reconstituted by the addition of heme and menaquinone to the growth medium. These activated electron transport chains lead to higher biomass production and increased robustness, which is beneficial for industrial applications, but a major concern when dealing with pathogenic lactic acid bacteria

    Reconstructing functional networks in the human intestinal tract using synthetic microbiomes : Systems Biology • Nanobiotechnology

    Get PDF
    The human intestinal tract harbors one of the most densely populated and open microbial ecosystems. The application of multi-omics approaches has provided insight into a wide array of complex interactions between the various groups of mainly anaerobic colonic microbes as well as the host-microbe dialogue. Integration of multi-omits techniques in cultivation based experiments that vary in complexity from monocultures to synthetic microbial communities identified key metabolic players in the trophic interactions as well as their ecological dynamics. A synergy between these approaches will be of utmost importance to reconstruct the functional interaction networks at the ecosystem level within the human intestinal microbiome. The improved understanding of microbiome functioning at ecosystem level will further aid in developing better predictive models and design of effective microbiome modulation strategies for health benefits.Peer reviewe
    • …