37 research outputs found

    Structure-activity relationships of constrained phenylethylamine ligands for the serotonin 5-ht2 receptors

    Get PDF
    Serotonergic ligands have proven effective drugs in the treatment of migraine, pain, obesity, and a wide range of psychiatric and neurological disorders. There is a clinical need for more highly 5-HT(2) receptor subtype-selective ligands and the most attention has been given to the phenethylamine class. Conformationally constrained phenethylamine analogs have demonstrated that for optimal activity the free lone pair electrons of the 2-oxygen must be oriented syn and the 5-oxygen lone pairs anti relative to the ethylamine moiety. Also the ethyl linker has been constrained providing information about the bioactive conformation of the amine functionality. However, combined 1,2-constriction by cyclization has only been tested with one compound. Here, we present three new 1,2-cyclized phenylethylamines, 9–11, and describe their synthetic routes. Ligand docking in the 5-HT(2B) crystal structure showed that the 1,2-heterocyclized compounds can be accommodated in the binding site. Conformational analysis showed that 11 can only bind in a higher-energy conformation, which would explain its absent or low affinity. The amine and 2-oxygen interactions with D3.32 and S3.36, respectively, can form but shift the placement of the core scaffold. The constraints in 9–11 resulted in docking poses with the 4-bromine in closer vicinity to 5.46, which is polar only in the human 5-HT(2A) subtype, for which 9–11 have the lowest affinity. The new ligands, conformational analysis and docking expand the structure-activity relationships of constrained phenethylamines and contributes towards the development of 5-HT(2) receptor subtype-selective ligands

    Identification of the first surrogate agonists for the G protein-coupled receptor GPR132

    Get PDF
    This is the accepted manuscript. The final version is available at http://pubs.rsc.org/en/Content/ArticleLanding/2015/RA/c5ra04804d#!divAbstract.GPR132 is an orphan Class A G protein-coupled receptor. It has been proposed to be activated by protons\ud and to regulate apoptosis, atherosclerosis and inflammation, but these results are still preliminary. In the\ud current work, we now designed and screened a focused compound library using a ?-arrestin recruitment\ud assay, and thereby identified the first disclosed surrogate GPR132 agonist 1 with a potency of 3.4 ?M.\ud This constitutes the first available pharmacological tool for the in vitro characterization of the orphan\ud receptor GPR132. The testing of 32 analogs furthermore identified a number of compounds with lower\ud activity - of which six were agonists and two were antagonists - that were used to construct preliminary\ud structure-activity relationships. Docking followed by molecular dynamics simulation of compound 1 in a\ud structural model of GPR132 displayed the putative interactions for the key ligand functionalities.M.A.S. was supported by a research scholarship from the\ud Drug Research Academy and Novo Nordisk A/S. D.E.G.\ud and H.B.-O. gratefully acknowledge financial support by\ud the Carlsberg Foundation. D.E.G. and D.S.P. gratefully\ud acknowledges financial support by the Lundbeck\ud Foundation. Nils Nyberg is acknowledged for help with\ud NMR spectroscopy. NMR equipment used in this work\ud was purchased via a grant from The Lundbeck\ud Foundation (R77-A6742)

    GPCRdb:an information system for G protein-coupled receptors

    Get PDF
    Recent developments in G protein-coupled receptor (GPCR) structural biology and pharmacology have greatly enhanced our knowledge of receptor structure-function relations, and have helped improve the scientific foundation for drug design studies. The GPCR database, GPCRdb, serves a dual role in disseminating and enabling new scientific developments by providing reference data, analysis tools and interactive diagrams. This paper highlights new features in the fifth major GPCRdb release: (i) GPCR crystal structure browsing, superposition and display of ligand interactions; (ii) direct deposition by users of point mutations and their effects on ligand binding; (iii) refined snake and helix box residue diagram looks; and (iii) phylogenetic trees with receptor classification colour schemes. Under the hood, the entire GPCRdb front- and back-ends have been re-coded within one infrastructure, ensuring a smooth browsing experience and development. GPCRdb is available at http://www.gpcrdb.org/ and it's open source code at https://bitbucket.org/gpcr/protwis

    The orphan G protein-coupled receptor GPR139 is activated by the peptides:Adrenocorticotropic hormone (ACTH), α-, and β-melanocyte stimulating hormone (α-MSH, and β-MSH), and the conserved core motif HFRW

    Get PDF
    GPR139 is an orphan G protein-coupled receptor that is expressed primarily in the brain. Not much is known regarding the function of GPR139. Recently we have shown that GPR139 is activated by the amino acids l-tryptophan and l-phenylalanine (EC(50) values of 220 μM and 320 μM, respectively), as well as di-peptides comprised of aromatic amino acids. This led us to hypothesize that GPR139 may be activated by peptides. Sequence alignment of the binding cavities of all class A GPCRs, revealed that the binding pocket of the melanocortin 4 receptor is similar to that of GPR139. Based on the chemogenomics principle “similar targets bind similar ligands”, we tested three known endogenous melanocortin 4 receptor agonists; adrenocorticotropic hormone (ACTH) and α- and β-melanocyte stimulating hormone (α-MSH and β-MSH) on CHO-k1 cells stably expressing the human GPR139 in a Fluo-4 Ca(2+)-assay. All three peptides, as well as their conserved core motif HFRW, were found to activate GPR139 in the low micromolar range. Moreover, we found that peptides consisting of nine or ten N-terminal residues of α-MSH activate GPR139 in the submicromolar range. α-MSH(1-9) was found to correspond to the product of a predicted cleavage site in the pre-pro-protein pro-opiomelanocortin (POMC). Our results demonstrate that GPR139 is a peptide receptor, activated by ACTH, α-MSH, β-MSH, the conserved core motif HFRW as well as a potential endogenous peptide α-MSH(1-9). Further studies are needed to determine the functional relevance of GPR139 mediated signaling by these peptides

    Novel Agonist Bioisosteres and Common Structure-Activity Relationships for The Orphan G Protein-Coupled Receptor GPR139

    Get PDF
    GPR139 is an orphan class A G protein-coupled receptor found mainly in the central nervous system. It has its highest expression levels in the hypothalamus and striatum, regions regulating metabolism and locomotion, respectively, and has therefore been suggested as a potential target for obesity and Parkinson’s disease. The two aromatic amino acids (L)-Trp and (L)-Phe have been proposed as putative endogenous agonists, and three structurally related benzohydrazide, glycine benzamide, and benzotriazine surrogate agonist series have been published. Herein, we assayed 158 new analogues selected from a pharmacophore model, and identified 12 new GPR139 agonists, containing previously untested bioisosteres. Furthermore, we present the first combined structure-activity relationships, and a refined pharmacophore model to serve as a rationale for future ligand identification and optimization

    Advances in GPCR modeling evaluated by the GPCR Dock 2013 assessment: Meeting new challenges

    Get PDF
    © 2014 Elsevier Ltd All rights reserved. Despite tremendous successes of GPCR crystallography, the receptors with available structures represent only a small fraction of human GPCRs. An important role of the modeling community is to maximize structural insights for the remaining receptors and complexes. The community-wide GPCR Dock assessment was established to stimulate and monitor the progress in molecular modeling and ligand docking for GPCRs. The four targets in the present third assessment round presented new and diverse challenges for modelers, including prediction of allosteric ligand interaction and activation states in 5-hydroxytryptamine receptors 1B and 2B, and modeling by extremely distant homology for smoothened receptor. Forty-four modeling groups participated in the assessment. State-of-the-art modeling approaches achieved close-to-experimental accuracy for small rigid orthosteric ligands and models built by close homology, and they correctly predicted protein fold for distant homology targets. Predictions of long loops and GPCR activation states remain unsolved problems

    Unifying view of mechanical and functional hotspots across class A GPCRs

    Get PDF
    G protein-coupled receptors (GPCRs) are the largest superfamily of signaling proteins. Their activation process is accompanied by conformational changes that have not yet been fully uncovered. Here, we carry out a novel comparative analysis of internal structural fluctuations across a variety of receptors from class A GPCRs, which currently has the richest structural coverage. We infer the local mechanical couplings underpinning the receptors' functional dynamics and finally identify those amino acids whose virtual deletion causes a significant softening of the mechanical network. The relevance of these amino acids is demonstrated by their overlap with those known to be crucial for GPCR function, based on static structural criteria. The differences with the latter set allow us to identify those sites whose functional role is more clearly detected by considering dynamical and mechanical properties. Of these sites with a genuine mechanical/dynamical character, the top ranking is amino acid 7x52, a previously unexplored, and experimentally verifiable key site for GPCR conformational response to ligand binding. \ua9 2017 Ponzoni et al

    Creating a specialist protein resource network:a meeting report for the protein bioinformatics and community resources retreat

    Get PDF
    During 11–12 August 2014, a Protein Bioinformatics and Community Resources Retreat was held at the Wellcome Trust Genome Campus in Hinxton, UK. This meeting brought together the principal investigators of several specialized protein resources (such as CAZy, TCDB and MEROPS) as well as those from protein databases from the large Bioinformatics centres (including UniProt and RefSeq). The retreat was divided into five sessions: (1) key challenges, (2) the databases represented, (3) best practices for maintenance and curation, (4) information flow to and from large data centers and (5) communication and funding. An important outcome of this meeting was the creation of a Specialist Protein Resource Network that we believe will improve coordination of the activities of its member resources. We invite further protein database resources to join the network and continue the dialogue
    corecore