57 research outputs found

    End-of-neoadjuvant treatment circulating microRNAs and HER2-positive breast cancer patient prognosis: An exploratory analysis from NeoALTTO

    Get PDF
    Cáncer de mama HER2 positivo; MicroARN circulante; Tratamiento neoadyuvanteCàncer de mama HER2-positiu; MicroARN circulant; Tractament neoadjuvantHER2-positive breast cancer; Circulating microRNA; Neoadjuvant treatmentBackground: The absence of breast cancer cells in surgical specimens, i.e., pathological complete response (pCR), is widely recognized as a favorable prognostic factor after neoadjuvant therapy. In contrast, the presence of disease at surgery characterizes a prognostically heterogeneous group of patients. Here, we challenged circulating microRNAs (miRNAs) at the end of neoadjuvant therapy as potential prognostic biomarkers in the NeoALTTO study. Methods: Patients treated within the trastuzumab arm (i.e., pre-operative weekly trastuzumab for 6 weeks followed by the addition of weekly paclitaxel for 12 weeks; post-operative FEC for 3 cycles followed by trastuzumab up to complete 1 year of treatment) were randomized into a training (n= 54) and testing (n= 72) set. RT-PCR-based high-throughput miRNA profile was performed on plasma samples collected at the end of neoadjuvant treatment of both sets. After normalization, circulating miRNAs associated with event free survival (EFS) were identified by univariate and multivariate Cox regression model. Results: Starting from 23 circulating miRNAs associated with EFS in the training set, we generated a 3-circulating miRNA prognostic signature consisting of miR-185-5p, miR-146a-5p, miR-22-3p, which was confirmed in the testing set. The 3-circulating miRNA signature showed a C-statistic of 0.62 (95% confidence interval [95%CI] 0.53-0.71) in the entire study cohort. By resorting to a multivariate Cox regression model we found a statistical significant interaction between the expression values of miR-194-5p and pCR status (p.interaction =0.005) with an estimate Hazard Ratio (HR) of 1.83 (95%CI 1.14- 2.95) in patients with pCR, and 0.87 (95%CI 0.69-1.10) in those without pCR. Notably, the model including this interaction along with the abovementioned 3-circulating miRNA signature provided the highest discriminatory capability with a C-statistic of 0.67 (95%CI 0.58-0.76). Conclusions: Circulating miRNAs are informative to identify patients with different prognosis among those with heterogeneous response after trastuzumab-based neoadjuvant treatment, and may be an exploitable tool to select candidates for salvage adjuvant therapy.The NeoALTTO study was sponsored by GlaxoSmithKline; Lapatinib is an asset of Novartis AG as of March 2, 2015. This sub-study was supported by the Italian Ministry of Health to SC. No grant number is applicable, funds were obtained through a law that allows tax-payers to allocate the 5 × 1000 share of their payments to research

    Impact of biospecimens handling on biomarker research in breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene expression profiling is moving from the research setting to the practical clinical use.</p> <p>Gene signatures able to correctly identify high risk breast cancer patients as well as to predict response to treatment are currently under intense investigation. While technical issues dealing with RNA preparation, choice of array platforms, statistical analytical tools are taken into account, the tissue collection process is seldom considered.</p> <p>The time elapsed between surgical tissue removal and freezing of samples for biological characterizations is rarely well defined and/or recorded even for recently stored samples, despite the publications of standard operating procedures for biological sample collection for tissue banks.</p> <p>Methods</p> <p>Breast cancer samples from 11 patients were collected immediately after surgical removal and subdivided into aliquots. One was immediately frozen and the others were maintained at room temperature for respectively 2, 6 and 24 hrs. RNA was extracted and gene expression profile was determined using cDNA arrays. Phosphoprotein profiles were studied in parallel.</p> <p>Results</p> <p>Delayed freezing affected the RNA quality only in 3 samples, which were not subjected to gene profiling. In the 8 breast cancer cases with apparently intact RNA also in sample aliquots frozen at delayed times, 461 genes were modulated simply as a function of freezing timing. Some of these genes were included in gene signatures biologically and clinically relevant for breast cancer. Delayed freezing also affected detection of phosphoproteins, whose pattern may be crucial for clinical decision on target-directed drugs.</p> <p>Conclusion</p> <p>Time elapsed between surgery and freezing of samples appears to have a strong impact and should be considered as a mandatory variable to control for clinical implications of inadequate tissue handling.</p

    the curious phenomenon of dual positive circulating cells longtime overlooked tumor cells

    Get PDF
    Abstract The presence in the blood of patients with solid tumors of circulating cells expressing both epithelial and leukocyte markers (dual-positive cells, DPcells), has often been reported, though it has never been investigated in detail. A recent study suggested that DPcells are hybrid cells derived from the fusion of tumor cells with macrophages. Such fusion hybrids acquire macrophage-associated features endowing them with accelerated growth, increased motility, enhanced invasion activity and thus, a higher efficiency in metastasis formation. However, no direct evidence proving the tumor origin of circulating DPcells was provided in patients. Here we contribute a review of literature data on DPcells and on the hybrid theory with the aim of putting the current evidence both in a biological and clinical perspective and to generate new hypotheses on the mechanisms underlying tumor progression. To add further biological and clinical context to our literature review, we also report some preliminary data from our laboratory on the identification of DPcells in several solid tumors and confirmation of their malignant genotype, thus classifying them as DP-CTCs

    A Case Matched Gender Comparison Transcriptomic Screen Identifies eIF4E and eIF5 as Potential Prognostic and Tractable Biomarkers in Male Breast Cancer

    Get PDF
    Purpose: Breast cancer (BC) affects both genders, but is understudied in men. Although still rare, male BC is being diagnosed more frequently. Treatments are wholly informed by clinical studies conducted in women, based on assumptions that underlying biology is similar. Experimental design: A transcriptomic investigation of male and female BC was performed, confirming transcriptomic data in silico. Biomarkers were immunohistochemically assessed in 697 MBCs (n=477, training; n=220, validation set) and quantified in pre- and post-treatment samples from a male BC patient receiving Everolimus and PI3K/mTOR inhibitor. Results: Gender-specific gene expression patterns were identified. eIF transcripts were up-regulated in MBC. eIF4E and eIF5 were negatively prognostic for overall survival alone (Log rank; p=0.013; HR=1.77, 1.12-2.8 and p=0.035; HR=1.68, 1.03-2.74, respectively), or when co-expressed (p=0.01; HR=2.66, 1.26-5.63), confirmed in the validation set. This remained upon multivariate Cox regression analysis (eIF4E p=0.016; HR 2.38 (1.18-4.8), eIF5 p=0.022; HR 2.55 (1.14-5.7); co-expression p=0.001; HR=7.04 (2.22-22.26)). Marked reduction in eIF4E and eIF5 expression was seen post BEZ235/Everolimus, with extended survival. Conclusions: Translational initiation pathway inhibition could be of clinical utility in male BC patients overexpressing eIF4E and eIF5. With mTOR inhibitors which target this pathway now in the clinic, these biomarkers may represent new targets for therapeutic intervention, although further independent validation is required

    Liquid Biopsy as Surrogate to Tissue for Molecular Profiling in Pancreatic Cancer: A Meta-Analysis towards Precision Medicine

    Get PDF
    Liquid biopsy (LB) is a non-invasive approach representing a promising tool for new precision medicine strategies for cancer treatment. However, a comprehensive analysis of its reliability for pancreatic cancer (PC) is lacking. To this aim, we performed the first meta-analysis on this topic. We calculated the pooled sensitivity, specificity, positive (LR+) and negative (LR‚ąí) likelihood ratio, and diagnostic odds ratio (DOR). A summary receiver operating characteristic curve (SROC) and area under curve (AUC) were used to evaluate the overall accuracy. We finally assessed the concordance rate of all mutations detected by multi-genes panels. Fourteen eligible studies involving 369 patients were included. The overall pooled sensitivity and specificity were 0.70 and 0.86, respectively. The LR+ was 3.85, the LR- was 0.34 and DOR was 15.84. The SROC curve with AUC of 0.88 indicated a relatively high accuracy of LB for molecular characterization of PC. The concordance rate of all mutations detected by multi-genes panels was 31.9%. LB can serve as surrogate to tissue in molecular profiling of PC, because of its relatively high sensitivity, specificity and accuracy. It represents a unique opportunity to be further explored towards its introduction in clinical practice and for developing new precision medicine approaches against PC

    Concomitant medications and circulating tumor cells: friends or foes?

    No full text
    The use of concomitant medications by patients with cancer is observed almost globally; however, little attention has been paid to this topic in the medical literature. Most clinical studies do not describe the type and duration of drugs used at the time of inclusion and during treatment or how these drugs may affect the experimental and/or standard therapy. Even less information has been published on the potential interaction between concomitant medications and tumor biomarkers. However, we do know that concomitant drugs can complicate cancer clinical trials and biomarker development, thus contributing to their interaction, leading to side effects, and resulting in suboptimal adherence to anticancer treatment. On the basis of these premises and moving from the study by Jurisova et al., which reported the effect of commonly used drugs on the prognosis of women with breast cancer and the detection of circulating tumor cells (CTCs), we comment on the role of CTCs as an emerging diagnostic and prognostic tool for breast cancer. We also report the known and hypothesized mechanisms of CTC interplay with other tumor and blood components, possibly modulated by widespread drugs, including over-the-counter compounds, and discuss the possible implications of commonly used concomitant medications on CTC detection and clearance. After considering all these points, it is conceivable that concomitant drugs are not necessarily a problem, but on the contrary, their virtuous mechanisms can be exploited to reduce tumor spread and enhance the effect of anticancer therapies

    The Detection and Morphological Analysis of Circulating Tumor and Host Cells in Breast Cancer Xenograft Models

    No full text
    Hematogenous dissemination may occur early in breast cancer (BC). Experimental models could clarify mechanisms, but in their development, the heterogeneity of this neoplasia must be considered. Here, we describe circulating tumor cells (CTCs) and the metastatic behavior of several BC cell lines in xenografts. MDA-MB-231, BT-474, MDA-MB-453 and MDA-MB-468 cells were injected at the orthotopic level in immunocompromised mice. CTCs were isolated using a size-based method and identified by cytomorphological criteria. Metastases were detected by COX IV immunohistochemistry. CTCs were detected in 90% of animals in each model. In MDA-MB-231, CTCs were observed after 5 weeks from the injection and step wisely increased at later time points. In animals injected with less aggressive cell lines, the load of single CTCs (mean &plusmn; SD CTCs/mL: 1.8 &plusmn; 1.3 in BT-474, 122.2 &plusmn; 278.5 in MDA-MB-453, 3.4 &plusmn; 2.5 in MDA-MB-468) and the frequency of CTC clusters (overall 38%) were lower compared to MDA-MB-231 (946.9 &plusmn; 2882.1; 73%). All models had lung metastases, MDA-MB-453 and MDA-MB-468 had ovarian foci too, whereas lymph nodal involvement was observed in MDA-MB-231 and MDA-MB-468 only. Interestingly, CTCs showed morphological heterogeneity and were rarely associated to host cells. Orthotopic xenograft of BC cell lines offers valid models of hematogenous dissemination and a possible experimental setting to study CTC-blood microenvironment interactions

    Tumor-extracellular matrix interactions: Identification of tools associated with breast cancer progression

    Get PDF
    AbstractSeveral evidences support the concept that cancer development and progression are not entirely cancer cell-autonomous processes, but may be influenced, and possibly driven, by cross-talk between cancer cells and the surrounding microenvironment in which, besides immune cells, stromal cells and extracellular matrix (ECM) play a major role in regulating distinct biologic processes. Stroma and ECM-related signatures proved to influence breast cancer progression, and to contribute to the identification of tumor phenotypes resistant to cytotoxic and hormonal treatments. The possible clinical implications of the interplay between tumor cells and the microenvironment, with special reference to ECM remodelling, will be discussed in this review

    Metabolic Footprints and Molecular Subtypes in Breast Cancer

    No full text
    Cancer treatment options are increasing. However, even among the same tumor histotype, interpatient tumor heterogeneity should be considered for best therapeutic result. Metabolomics represents the last addition to promising ‚Äúomic‚ÄĚ sciences such as genomics, transcriptomics, and proteomics. Biochemical transformation processes underlying energy production and biosynthetic processes have been recognized as a hallmark of the cancer cell and hold a promise to build a bridge between genotype and phenotype. Since breast tumors represent a collection of different diseases, understanding metabolic differences between molecular subtypes offers a way to identify new subtype-specific treatment strategies, especially if metabolite changes are evaluated in the broader context of the network of enzymatic reactions and pathways. Here, after a brief overview of the literature, original metabolomics data in a series of 92 primary breast cancer patients undergoing surgery at the Istituto Nazionale dei Tumori of Milano are reported highlighting a series of metabolic differences across various molecular subtypes. In particular, the difficult-to-treat luminal B subgroup represents a tumor type which preferentially relies on fatty acids for energy, whereas HER2 and basal-like ones show prevalently alterations in glucose/glutamine metabolism
    • ‚Ķ
    corecore