5,376 research outputs found


    Get PDF
    Tumor cells subvert the control of the immune system by downregulation of their antigenicity and production of an immunosuppressive microenvironment including the upregulation and engagement of inhibitory receptors on immune cells. Therapeutic strategies have demonstrated that the immune system can be reactivated and control established cancers by blocking inhibitory receptors on immune cells such CTLA-4 and PD1. While such activation of the immune system is successful in some patients, many patients still show cancer progression after some time. Thus, the definition of new targetable immunomodulatory pathways is needed to improve the outcome in those patients. Recent evidence suggests that sialic acid dependent ligands on tumor cells can engage inhibitory sialic acid binding immunoglobulin-like lectins (Siglecs) on NK cells and cells of the myelomonocytic lineage and thereby facilitate evasion of immune-mediated killing. Moreover, the presence of a natural variant of Siglec-9 with reduced binding capacity to sialic acid dependent ligands in patients with non-small cell lung cancer improved the two year survival in a retrospective multivariate analysis. Here we identify a novel cancer-associated ligand for immuno-inhibitory Siglecs by affinity chromatography and subsequent proteomic analysis. LectinGalactoside-Binding Soluble 3 Binding Protein (LGALS3BP) bound to various inhibitory Siglecs including Siglec-5, Siglec-9 and Siglec-10 with high affinity. LGALS3BP was previously found to be upregulated in various carcinomas such as breast, colorectal, prostate and lung cancer and linked to advanced stage and poor prognosis. The exact function during cancer progression, however, was not yet defined. Our findings provide a novel insight into how LGALS3BP could promote immune evasion by inhibiting immune cell activation through engagement of Siglecs and defines LGALS3BP-Siglec interactions as potential novel target to interfere with cancer progression and reactivate the immune system against carcinomas. Disclosure: All authors have declared no conflicts of interes

    Active White Space (AWS) in Logo Designs: Effects on Logo Evaluations and Brand Communication

    Get PDF
    In this article, we explore Active White Space (AWS)—the space between individual logo design elements—as a stylistic modification that revamps a logo design yet preserves its extant associations. Across three studies, we find AWS to be an effective stylistic logo tool. In Study 1, we find that adding AWS to pictorial logos improves their visual evaluation. In Study 2, we find this positive evaluation to spillover to verbal brand aspects such that logo designs with AWS are perceived to communicate brand descriptions more clearly. In Study 3, we find that logo designs with AWS benefit sophisticated brand personalities the most, followed by sincere, exciting, and competent brand personalities, with no effect on rugged brand personalities

    Siglec receptors impact mammalian lifespan by modulating oxidative stress.

    Get PDF
    Aging is a multifactorial process that includes the lifelong accumulation of molecular damage, leading to age-related frailty, disability and disease, and eventually death. In this study, we report evidence of a significant correlation between the number of genes encoding the immunomodulatory CD33-related sialic acid-binding immunoglobulin-like receptors (CD33rSiglecs) and maximum lifespan in mammals. In keeping with this, we show that mice lacking Siglec-E, the main member of the CD33rSiglec family, exhibit reduced survival. Removal of Siglec-E causes the development of exaggerated signs of aging at the molecular, structural, and cognitive level. We found that accelerated aging was related both to an unbalanced ROS metabolism, and to a secondary impairment in detoxification of reactive molecules, ultimately leading to increased damage to cellular DNA, proteins, and lipids. Taken together, our data suggest that CD33rSiglecs co-evolved in mammals to achieve a better management of oxidative stress during inflammation, which in turn reduces molecular damage and extends lifespan

    An Open Receptor-Binding Cavity of Hemagglutinin-Esterase-Fusion Glycoprotein from Newly-Identified Influenza D Virus: Basis for Its Broad Cell Tropism.

    Get PDF
    Influenza viruses cause seasonal flu each year and pandemics or epidemic sporadically, posing a major threat to public health. Recently, a new influenza D virus (IDV) was isolated from pigs and cattle. Here, we reveal that the IDV utilizes 9-O-acetylated sialic acids as its receptor for virus entry. Then, we determined the crystal structures of hemagglutinin-esterase-fusion glycoprotein (HEF) of IDV both in its free form and in complex with the receptor and enzymatic substrate analogs. The IDV HEF shows an extremely similar structural fold as the human-infecting influenza C virus (ICV) HEF. However, IDV HEF has an open receptor-binding cavity to accommodate diverse extended glycan moieties. This structural difference provides an explanation for the phenomenon that the IDV has a broad cell tropism. As IDV HEF is structurally and functionally similar to ICV HEF, our findings highlight the potential threat of the virus to public health

    Exploring the Impact of Ketodeoxynonulosonic Acid in Host-Pathogen Interactions Using Uptake and Surface Display by Nontypeable Haemophilus influenzae

    Get PDF
    Surface expression of the common vertebrate sialic acid (Sia) N-acetylneuraminic acid (Neu5Ac) by commensal and pathogenic microbes appears structurally to represent molecular mimicry of host sialoglycans, facilitating multiple mechanisms of host immune evasion. In contrast, ketodeoxynonulosonic acid (Kdn) is a more ancestral Sia also present in prokaryotic glycoconjugates that are structurally quite distinct from vertebrate sialoglycans. We detected human antibodies against Kdn-terminated glycans, and sialoglycan microarray studies found these anti-Kdn antibodies to be directed against Kdn-sialoglycans structurally similar to those on human cell surface Neu5Ac-sialoglycans. Anti-Kdn-glycan antibodies appear during infancy in a pattern similar to those generated following incorporation of the nonhuman Sia N-glycolylneuraminic acid (Neu5Gc) onto the surface of nontypeable Haemophilus influenzae (NTHi), a human commensal and opportunistic pathogen. NTHi grown in the presence of free Kdn took up and incorporated the Sia into its lipooligosaccharide (LOS). Surface display of the Kdn within NTHi LOS blunted several virulence attributes of the pathogen, including Neu5Ac-mediated resistance to complement and whole blood killing, complement C3 deposition, IgM binding, and engagement of Siglec-9. Upper airway administration of Kdn reduced NTHi infection in human-like Cmah null (Neu5Gc-deficient) mice that express a Neu5Ac-rich sialome. We propose a mechanism for the induction of anti-Kdn antibodies in humans, suggesting that Kdn could be a natural and/or therapeutic Trojan horse that impairs colonization and virulence phenotypes of free Neu5Ac-assimilating human pathogens. IMPORTANCE All cells in vertebrates are coated with a dense array of glycans often capped with sugars called sialic acids. Sialic acids have many functions, including serving as a signal for recognition of self cells by the immune system, thereby guiding an appropriate immune response against foreign nonself and/or damaged cells. Several pathogenic bacteria have evolved mechanisms to cloak themselves with sialic acids and evade immune responses. Here we explore a type of sialic acid called Kdn (ketodeoxynonulosonic acid) that has not received much attention in the past and compare and contrast how it interacts with the immune system. Our results show potential for the use of Kdn as a natural intervention against pathogenic bacteria that take up and coat themselves with external sialic acid from the environment

    Genetic Interactions Between Drosophila sialyltransferase and β1,4-N-acetylgalactosaminyltransferase-A Genes Indicate Their Involvement in the Same Pathway

    Get PDF
    Sialylated glycans play a prominent role in the Drosophila nervous system where they are involved in the regulation of neural transmission. However, the functional pathway of sialylation in invertebrates, including Drosophila, remains largely unknown. Here we used a combination of genetic and behavioral approaches to shed light on the Drosophila sialylation pathway. We examined genetic interactions between Drosophila sialyltransferase (DSiaT) and β1,4-N-acetylgalactosaminyltransferase (β4GalNAcT) genes. Our results indicated that β4GalNAcTA and DSiaT cooperate within the same functional pathway that regulates neural transmission. We found that β4GalNAcTA is epistatic to DSiaT. Our data suggest an intriguing possibility that β4GalNAcTA may participate in the biosynthesis of sialylated glycans