55 research outputs found

    An Engineered Protease that Cleaves Specifically after Sulfated Tyrosine

    Get PDF
    The bacterial protease OmpT has been engineered to cleave after sulfotyrosine residues in peptide substrates but not after phosphotyrosine (see scheme). A selection/counterselection screen was used to identify OmpT variants with the desired specificity and high levels of overall catalytic activity

    Multi-copy genes that enhance the yield of mammalian G protein-coupled receptors in Escherichia coli

    Get PDF
    Low yields of recombinant expression represent a major barrier to the physical characterization of membrane proteins. Here, we have identified genes that globally enhance the production of properly folded G protein-coupled receptors (GPCRs) in Escherichia coli. Libraries of bacterial chromosomal fragments were screened using two separate systems that monitor: (i) elevated fluorescence conferred by enhanced expression of GPCR–GFP fusions and (ii) increased binding of fluorescent ligand in cells producing more active receptor. Three multi-copy hits were isolated by both methods: nagD, encoding the ribonucleotide phosphatase NagD; a fragment of nlpD, encoding a truncation of the predicted lipoprotein NlpD, and the three-gene cluster ptsN–yhbJ–npr, encoding three proteins of the nitrogen phosphotransferase system. Expression of these genes resulted in a 3- to 10-fold increase in the yields of different mammalian GPCRs. Our data is consistent with the hypothesis that the expression of these genes may serve to maintain the integrity of the bacterial periplasm and to provide a favorable environment for proper membrane protein folding, possibly by inducing a fine-tuned stress response and/or via modifying the composition of the bacterial cell envelope

    Single-cell characterization of autotransporter mediated Escherichia coli surface display of disulfide-bond containing proteins

    Get PDF
    Autotransporters (ATs) are a family of bacterial proteins containing a C-terminal ?-barrel-forming domain that facilitates the translocation of N-terminal passenger domain whose functions range from adhesion to proteolysis. Genetic replacement of the native passenger domain with heterologous proteins is an attractive strategy not only for applications such as biocatalysis, live-cell vaccines, and protein engineering but also for gaining mechanistic insights toward understanding AT translocation. The ability of ATs to efficiently display functional recombinant proteins containing multiple disulfides has remained largely controversial. By employing high-throughput single-cell flow cytometry, we have systematically investigated the ability of the Escherichia coli AT Antigen 43 (Ag43) to display two different recombinant reporter proteins, a single-chain antibody (M18 scFv) that contains two disulfides and chymotrypsin that contains four disulfides, by varying the signal peptide and deleting the different domains of the native protein. Our results indicate that only the C-terminal ?-barrel and the threaded ?-helix are essential for efficient surface display of functional recombinant proteins containing multiple disulfides. These results imply that there are no inherent constraints for functional translocation and display of disulfide bond-containing proteins mediated by the AT system and should open new avenues for protein display and engineering

    Functional enrichment by direct plasmid recovery after Fluorescence Activated Cell Sorting

    Get PDF
    Iterative screening of expressed protein libraries using fluorescence-activated cell sorting (FACS) typically involves culturing the pooled clones after each sort. In these experiments, if cell viability is compromised by the sort conditions and/or expression of the target protein(s), rescue PCR provides an alternative to culturing but requires re-cloning and can introduce amplification bias. We haveoptimized a simple protocol using commercially available reagents to directly recover plasmid DNA from sorted cells for subsequenttransformation. We tested our protocol with 2 different screening systems in which 60% of the sorted cell population was recovered

    Quantitative High-Throughput Single-Cell Cytotoxicity Assay for T cells

    Get PDF
    Cancer immunotherapy can harness the specificity of immune response to target and eliminate tumors. Adoptive cell therapy (ACT) based on the adoptive transfer of T cells genetically modified to express a chimeric antigen receptor (CAR) has shown considerable promise in clinical trials1-4. There are several advantages to using CAR+ T cells for the treatment of cancers including the ability to target non-MHC restricted antigens and to functionalize the T cells for optimal survival, homing and persistence within the host; and finally to induce apoptosis of CAR+ T cells in the event of host toxicity5. Delineating the optimal functions of CAR+ T cells associated with clinical benefit is essential for designing the next generation of clinical trials. Recent advances in live animal imaging like multiphoton microscopy have revolutionized the study of immune cell function in vivo6,7. While these studies have advanced our understanding of T-cell functions in vivo, T-cell based ACT in clinical trials requires the need to link molecular and functional features of T-cell preparations pre-infusion with clinical efficacy post-infusion, by utilizing in vitro assays monitoring T-cell functions like, cytotoxicity and cytokine secretion. Standard flow-cytometry based assays have been developed that determine the overall functioning of populations of T cells at the single-cell level but these are not suitable for monitoring conjugate formation and lifetimes or the ability of the same cell to kill multiple targets8. Microfabricated arrays designed in biocompatible polymers like polydimethylsiloxane (PDMS) are a particularly attractive method to spatially confine effectors and targets in small volumes9. In combination with automated time-lapse fluorescence microscopy, thousands of effector-target interactions can be monitored simultaneously by imaging individual wells of a nanowell array. We present here a high-throughput methodology for monitoring T-cell mediated cytotoxicity at the single-cell level that can be broadly applied to studying the cytolytic functionality of T cells

    Highly active and selective endopeptidases with programmed substrate specificities

    Get PDF
    A family of engineered endopeptidases has been created that is capable of cleaving a diverse array of peptide sequences with high selectivity and catalytic efficiency (kcat/KM > 104 M?1 s?1). By screening libraries with a selection-counterselection substrate method, protease variants were programmed to recognize amino acids having altered charge, size and hydrophobicity properties adjacent to the scissile bond of the substrate, including Glu?Arg, a specificity that to our knowledge has not been observed among natural proteases. Members of this artificial protease family resulted from a relatively small number of amino acid substitutions that (at least in one case) proved to be epistatic

    Detection and isolation of auto-reactive human antibodies from primary B cells

    Get PDF
    The isolation of human monoclonal antibodies (hmAb) has emerged as a versatile platform in a wide variety of contexts ranging from vaccinology to therapeutics. In particular, the presence of high titers of circulating auto-antibodies is implicated in the pathology and outcome of autoimmune diseases. Therefore, the molecular characterization of these hmAb provides an avenue to understanding the pathogenesis of autoimmune diseases. Additionally, the phenotype of the auto-reactive B cells may have direct relevance for therapeutic intervention. In this report, we describe a high-throughput single-cell assay, microengraving, for the screening, characterization and isolation of anti-citrullinated protein antibodies (ACPA) from peripheral blood mononuclear cells (PBMC) of rheumatoid arthritis (RA) patients. Stimulated B cells are profiled at the single-cell level in a large array of sub-nanoliter nanowells (?105), assessing both the phenotype of the cells and their ability to secrete cyclic-citrullinated peptide (CCP)-specific antibodies. Single B cells secreting ACPA are retrieved by automated micromanipulation, and amplification of the immunoglobulin (Ig) heavy and light chains is performed prior to recombinant expression. The methodology offers a simple, rapid and low-cost platform for isolation of auto-reactive antibodies from low numbers of input cells and can be easily adapted for isolation and characterization of auto-reactive antibodies in other autoimmune diseases

    Rapid, efficient functional characterization and recovery of HIV-specific human CD8+ T cells using microengraving

    Get PDF
    The nature of certain clinical samples (tissue biopsies, fluids) or the subjects themselves (pediatric subjects, neonates) often constrain the number of cells available to evaluate the breadth of functional T-cell responses to infections or therapeutic interventions. The methods most commonly used to assess this functional diversity ex vivo and to recover specific cells to expand in vitro usually require more than 106 cells. Here we present a process to identify antigen-specific responses efficiently ex vivo from 104–105 single cells from blood or mucosal tissues using dense arrays of subnanoliter wells. The approach combines on-chip imaging cytometry with a technique for capturing secreted proteins—called “microengraving”—to enumerate antigenspecific responses by single T cells in a manner comparable to conventional assays such as ELISpot and intracellular cytokine staining. Unlike those assays, however, the individual cells identified can be recovered readily by micromanipulation for further characterization in vitro. Applying this method to assess HIV-specific T cell responses demonstrates that it is possible to establish clonal CD8+ T-cell lines that represent the most abundant specificities present in circulation using 100- to 1,000-fold fewer cells than traditional approaches require and without extensive genotypic analysis a priori. This rapid (<24 h), efficient, and inexpensive process should improve the comparative study of human T-cell immunology across ages and anatomic compartments
    • …