590 research outputs found

    Ingredients of nuclear matrix element for two-neutrino double-beta decay of 48Ca

    Full text link
    Large-scale shell model calculations including two major shells are carried out, and the ingredients of nuclear matrix element for two-neutrino double beta decay are investigated. Based on the comparison between the shell model calculations accounting only for one major shell (pfpf-shell) and those for two major shells (sdpfsdpf-shell), the effect due to the excitation across the two major shells is quantitatively evaluated.Comment: To appear in J. Phys. Soc. Conf. Proc. (ARIS2014); for ver.2, Fig.1 is revise

    Stochastic Estimation of Nuclear Level Density in the Nuclear Shell Model: An Application to Parity-Dependent Level Density in 58^{58}Ni

    Full text link
    We introduce a novel method to obtain level densities in large-scale shell-model calculations. Our method is a stochastic estimation of eigenvalue count based on a shifted Krylov-subspace method, which enables us to obtain level densities of huge Hamiltonian matrices. This framework leads to a successful description of both low-lying spectroscopy and the experimentally observed equilibration of Jπ=2+J^\pi=2^+ and 2−2^- states in 58^{58}Ni in a unified manner.Comment: 13 pages, 4 figure

    Onset of intruder ground state in exotic Na isotopes and evolution of the N=20 shell gap

    Get PDF
    The onset of intruder ground states in Na isotopes is investigated by comparing experimental data and shell-model calculations. This onset is one of the consequences of the disappearance of the N=20 magic structure, and the Na isotopes are shown to play a special role in clarifying the change of this magic structure. Both the electromagnetic moments and the energy levels clearly indicate an onset of ground state intruder configurations at neutron number N=19 already, which arises only with a narrow N=20 shell gap in Na isotopes resulting from the spin-isospin dependence of the nucleon-nucleon interaction (as compared to a wider gap in stable nuclei like 40Ca). It is shown why the previous report based on the mass led to a wrong conclusion.Comment: 9 pages, 6 figures, to be published in Phys. Rev.

    Benchmark calculation of no-core Monte Carlo shell model in light nuclei

    Full text link
    The Monte Carlo shell model is firstly applied to the calculation of the no-core shell model in light nuclei. The results are compared with those of the full configuration interaction. The agreements between them are within a few % at most.Comment: 4 pages, 1 figure, 1 table, Proceedings of the International Symposium on New Faces of Atomic Nuclei, Okinawa, Japan, Nov. 15-17, 201

    Novel Extrapolation Method in the Monte Carlo Shell Model

    Get PDF
    We propose an extrapolation method utilizing energy variance in the Monte Carlo shell model in order to estimate the energy eigenvalue and observables accurately. We derive a formula for the energy variance with deformed Slater determinants, which enables us to calculate the energy variance efficiently. The feasibility of the method is demonstrated for the full pfpf-shell calculation of 56^{56}Ni, and the applicability of the method to a system beyond current limit of exact diagonalization is shown for the pfpf+g9/2g_{9/2}-shell calculation of 64^{64}Ge.Comment: 4 pages, 4figure
    • …
    corecore